?t(60?30)?(250?30)?e|x?l?7.07?[?xe2.12?e?2.12=-162.89
?2.12e2.12e2.12(250?30)?(60?30)?2.12-e2.12?2.12e?e
Qx?l??40?(-162.89)?d24?2.05W
球壳
2-22 一个储液氨的容器近似的看成为内径为300mm的圆球。球外包有厚为30mm的多层结
?41.8?10W/(m.K),球内液氨的温构的隔热材料。隔热材料沿半径方向的当量导热系数为
度为-195.6℃,室温为25℃,液氨的相变热为199.6kJ/kg。试估算在上述条件下液氨每天的蒸
发量。
〔25?(?195.6)〕??1.8?10?4?4???0.822W11-0.150.165解:
0.822?24?3600m??0.3562Kg199.6?1000
2-23 有一批置于室外的液化石油气储罐,直径为2m,通过使制冷剂流经罐外厚为1cm的夹
层来维持罐内的温度为-40℃。夹层外厚为30cm的保温层,保温材料的导热系数为0.1
W/(m.K)。在夏天的恶劣条件下,环境温度为40℃,保温层外表面与环境间的复合换热表
2W/(m.K)。试确定为维持液化气-40℃的温度,对10个球罐所必须配备面传热系数可达30
的制冷设备的容量。罐及夹层钢板的壁厚可略略而不计。
??解:一个球罐热流量为
?t1?t2?R
1111111?)??(?)??0.178524??rr4??0.11.011.330?4?h?4?r122
40?(?40)???448.168W0.1785
所以10个球罐热流量为???10??4481.68W
R?(2-24 颗粒状散料的表面导热系数常用圆球导热仪来测定。如附图所示内球内安置有一电加热器,被测材料安装在内外球壳间的夹套中,外球外有一水夹层,其中通以进口温度恒定的 冷却水。用热电偶测定内球外壁及外球内壁的平均温度。在一次实验中测得以下数据:
1di?0.15m;d0?0.25m,tt?200℃,t0?40℃,电加热功率P=56.5W。试确定此颗粒材
料的表观导热系数。
如果由于偶然的事故,测定外球内壁的热电偶线路遭到破坏,但又急于要获得该颗粒表观导热系数的近似值,试设想一个无需修复热电偶线路又可以获得近似值的测试方法。球壳内用铝制成,其厚度约为3~4mm。
〔200?40〕?4???56.5W11-0.150.25解:根据题意:
解得:?=0.07W/(m.K)
????如果电偶损坏,可近似测量水的出入口温度,取其平均值代替球外壳温度计算。
2-25 内外径各为0.5m及0.6m的球罐,其中装满了具有一定放射性的化学废料,其容积发热
253W/(m.K),流体温度??10W/m率为。该罐被置于水流中冷却,表面传热系数h=1000
tf?25℃。试:(1)确定球罐的外表面温度;(2)确定球罐的内表面温度。球罐用铬镍钢
钢板制成。
V?解:球罐的体积为:
434?r??3.14?0.253?0.06541633
?105?6541.67W 总发热热流为:??0.0654162??4?rh(t?25)?6541.67 球的外表温度:
解得:t=30.78℃
〔t?30.78〕??15.2??4???6541.67W11-0.250.3解得t=53.62℃
2-26 附图所示储罐用厚为20mm的塑料制成,其导热系数??1.5W/(m.K),储罐内装满工业用油,油中安置了一电热器,使罐的内表面温度维持在400K。该储罐置于25℃的空气中,表面传热系数为10W/(m.K)。0。试确定所需的电加热功率。
2-27 人的眼睛在完成生物功能过程中生成的热量要 通过角膜散到周围环境中,其散热条件与是否带有隐性眼镜片有关,如附图所示,设角膜及隐性镜片均呈球状,且两者间接触良好,无接触热阻。角膜及镜片所张的中心角占了三分之一的球体。试确定在下列条件下不戴镜片及戴镜片时通过角膜的散热量:r1=10mm,r2=12.5mm,3=16.3mm,
2r?0.5m,l?2.0mrtfi=37℃
tf0?20℃,
hi=12W/(m2.K),h0=6W/(m2.K),?1=0.35 W/(m.K),?2=0.8 W/(m.K)。
R?解:不戴镜片
111?11???????hiAihoAo4??1??r1r2?
?t?0.109WR所以 1???o?0.0363W3有效热量
?o?R?戴镜片时
111?11?1???????hiAihoAo4??1??r1r2?4??2?11???r?r??3? ?2?t?0.108WR所以
1???o?0.036W3即散热量为
?o?2-28 一储存液态气体的球形罐由薄金属板制成,直径为1.22m,其外包覆有厚为0.45m,导热系数为0.043W/(m.K)的软木保温层。液态气体温度为-62.2℃,与金属壳体间换热的表面
2W/(m.K)。由于软木保温层的密闭性不好,大气中的水蒸气浸入软木层,并传热系数为21
在一定深度范围内冻结成了冰。假设软木保温层的导热系数不受水蒸气及所形成的冰层的影
响,试确定软木保温层中冰层的深度。球形罐金属壳体的热阻可不计。在 实际运行中,因保
温层的密闭性不好而在软木保温层中出现的水和冰,对球形罐的保温性能有何影响?
2-29 在一电子器件中有一晶体管可视为半径为0.1mm的半球热源,如附图所示。该晶体管被置于一块很大的硅基板中。硅基板一侧绝热,其余各面的温度均为t?。硅基板导热系数
??120W/(m.K)。试导出硅基板中温度分布的表达式,并计算当晶体管发热量为??4W
时晶体管表面的温度值。
提示:相对于0.1mm这样小的半径,硅基板的外表面可以视为半径趋于无穷大的球壳表面。 变截面变导热系数问题
2-30 一高为30cm的铝制圆台形锥台,顶面直径为8.2cm,底面直径为13cm.。底面及顶面温度各自均匀,并分别为520℃及20℃,锥台侧面绝热。试确定通过该锥形台的导热量。铝的导热系数为100W/(m.K)。
???A(x)?解:根据傅利叶导热公式得
dtdx
x0x?30?06.5得x0?51.23 因为:4.1x0?dx6.5?4.1?rx30 得rx?0.41?0.082dx
代入数据积分得??1397W
2-31 试比较附图所示的三种一维导热问题的热流量大小:凸面锥台,圆柱,凹面锥台。比较
n的条件是d1,t1,t2及导热系数均相同。三种形状物体的直径与x轴的关系可统一为d?ax,其中a及n值如下:
凸面锥台 柱体 凹面锥台
a 0.506m 0.08m 20.24m n 0.5 0.0 1.5
1/2?1/2
x1?25mm,x2?125mm。
??解:对于变截面导热 凸面锥台 柱体
??t1?t2??x2x1dxAx
?x2x1x2?x1x2dxx28n?4x2n?1dx?320m?22?AX=x1?a
dxx24x?1dx?320.35m?22?AX=x1?a
x2dx164?2xdx?263.23m?x1AX?x1??20?24?2凹面锥台 =
?3??1??2由上分析得
2-32 某种平板材料厚25mm,两侧面分别维持在40℃及85℃。测得通过该平板的热流量为1.82km,导热面积为0.2m。试: 确定在此条件下平板的平均导热系数。 设平板材料导热系数按
2???0(1?bt)变化(其中t为局部温度)
。为了确定上述温
度范围内解:由
?0及b值,还需要补充测定什么量?给出此时确定?0及b的计算式。
dtdx得??5W/(m.K)
t0
???A?补充测定中心位置的温度为
dtdx
???0(1?bt) 又
t?t???x2?x1???0?t1?t2???1?b12?A2? (1) ?所以???A?b?代入数据解得
4t0?2t2?2t1t1?2t0?t2 (2)
22将(2)代入(1)得到
?0
2-33 一空心圆柱,在r?r1处t?t1,r?r2处t?t2。导出圆柱中温度分布的表达式及导热量计算式。 解:导热微分方程式简化为
?(t)??0(1?bt),t为局部温度,试
d?dt?dt??r??0?r?c1dr?dr?dr 即
所以
?0?1?bt?dt?c1b?dr?0t?0t2?c1lnr?c2r 即2
b?02t1?c1lnr1?c2r?rt?t211当在处即 (1)
b??0t2?0t22?c1lnr2?c2r?r2处t?t2 即2 (2)
?0t1?c1?两个式子联立得
?0?t1?t2??1??0?t1?t2??
?b?2lnr1r2??c2? (1)-(2)得
?0?t1?t2??1??0?t1?t2??lnr1??b2lnr1r2??br??0?t1?t2???0t12?t22?c1ln??1r?2?2??
? (3)
将c1,c2代入(3)得温度表达式
?0t??0t2??0?t1?t2??1??0?t1?t2??
b2??b2?ln?r.r1??lnr1r2