第一性原理计算及相关理论方法 下载本文

表示电子的动能项和电子之间的库伦相互作用项之和。

Vext??V(ri)i (2.11)

代表N个电子系统的定域外势,描述单电子在离子实构成的晶格势场中运动。当给定总粒子数N和电子间相互作用的形式以及电荷和质量时,定域外势自然就成为控制多电子系统物性的唯一变量。根据HK定理,电子的定域外势Vext(r)与系统的基态电子数密度?o(r)成一一对应关系。如此,对于特定的电荷密度?o(r),就可以唯一地确定哈密顿量,进而求得体系基态或者激发态。即体系的任何性质都可以由系统的基态电荷密度分布函数?o(r)唯一确定。

我们可以将定域外势Vext(r)与系统的电荷密度分布函数?o(r)表示成如下的 泛函形式:

?(r)?D(Vext);Vext(r)?G(?) (2.12)

当定域外势已知时,不仅可以确定系统的基态波函数?(Vext),还可以进一步确定系统的基态能、动能和电子间的相互作用,并写成如下泛函形式:E(Vext),T(Vext),

Eee(Vext)。又根据对应关系(2.12) , 进一步写成E(?),T(?),Eee(?)。这时,基态能量可以表示成如下电荷密度分布泛函的形式:

E(?,V)??(?)|T?Vee?Vext|?(?)?T(?)?Vee(?)??d3rVext(r)?(r)?T(?)?133?(r)?(r')drdr'?Exc(?)??d3rVext(r)?(r)?2|r?r'| (2.13)

?F(?)??d3rVext(r)?(r)HK定理二告诉我们,? 取严格的基态电子密度时,能量泛函(2.13)才可能取得极小值,并且等于系统的基态能。其中的动能项仍然是未知的,于是W.Kohn和L. J. Sham提出[86]:用无相互作用的多粒子的动能泛函T0(?)来代替这里的真实动能泛函T(?),把他们的差别放进未知的交换关联项Eexc(?)中,从而转化为单电子图像:

?(r)??|?i(r)|2i (2.14)

T0(?)???d3r?i*(r)(??2)?i(r)i (2.15)

于是对ρ(r)的变分可以转化成对单粒子波函数φi(r)的变分,得到KS方程:

(?2m?2?Vext(r)?e2?d3r'?Exc(?) )?i(r)?Ei?i(r)|r'?r|?? (2.16)?(r')?如此,人们总可以将求解基态密度的多体问题在形式上转化为描述单电子运动

的等效KS方程来代替,这个意义上,密度泛函理论和KS方程为单电子近似提供了严格的理论基础。

在当前计算机高速发展、DFT理论已经取得辉煌成功的今天,对于原子势的表述可以取赝势或全势,赝势又可以分为模守恒赝势(NCPP),超软赝势(USPP)以及投影缀加波函数(PAW);基函数的选取又可以分为:简单平面波,线性缀加平面波(LAPW),线性原子轨道组合(LCAO),线性Muffin-Tin轨道(LMTO)等等。基于原子势和基函数的选取,目前已经发展出了很多成熟的高性能第一性原理的计算软件

(BSTATE[92],WIEN2k[93], VASP[94, 95],Quantum Espresso[96], ABINIT[97])。需要注意的是,密度泛函理论只是有理论上的意义,其中交换关联项Exc还是未知的,也就是说它没有提供具体的实用的方案。为了进行实际可行的计算,必需对交换关联项进行某种处理,用的比较广的是局域密度近似(Local Density Approximation, LDA)[86, 98, 99]和广义梯度近似(Generalized Gradient Approximation, GGA)[100–104]。

参考文献部分:

[79] Martin,Richard M. Electronic Structure Basic Theory and Practical Methods.

Cambridge University Press, Cambridge, 2004.

[80] 李正中. 固体理论. 高等教育出版社, 北京, 2002. [81] 马文淦. 计算物理学. 科学出版社, 北京, 2006.

[82] Nicola Marzari and David Vanderbilt. Maximally localized generalized

Wannier functions for composite energy bands. Phys. Rev. B, 56:12847–

12865, Nov 1997.

[83] Ivo Souza, Nicola Marzari, and David Vanderbilt. Maximally localized

Wannier functions for entangled energy bands. Phys. Rev. B, 65:035109, Dec 2001.

100 拓扑半金属的第一性原理研究

[84] L. C. Lew Yan Voon and M. Willatzen. The k · p Method: Electronic Properties of Semiconductors. Springer, Berlin, 2009.

[85] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 136:B864–B871, Nov 1964. [86] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140:A1133–A1138, Nov 1965. [87] D.R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24(01):89–110, 1928.

[88] J. C. Slater. Note on Hartree’s Method. Phys. Rev., 35:210–211, Jan 1930.

[89] V. Fock. N¨aherungsmethode zur l¨osung des quantenmechanischen mehrk¨orperproblems. Zeitschrift f¨ur Physik A Hadrons and Nuclei, 61:126–

148, 1930.

[90] P. E. Bl¨ochl. Projector augmented-wave method. Phys. Rev. B, 50:17953–

17979, Dec 1994.

[91] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector

augmented-wave method. Phys. Rev. B, 59:1758–1775, Jan 1999. [92] Zhong Fang and Kiyoyuki Terakura. Structural distortion and magnetism

in transition metal oxides: crucial roles of orbital degrees of freedom.

Journal of Physics: Condensed Matter, 14(11):3001, 2002.

[93] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz. WIEN2k package. available at http://www.wien2k.at. [94] G. Kresse and J. Hafner. Ab initio molecular dynamics for open-shell transition

metals. Phys. Rev. B, 48:13115–13118, Nov 1993. [95] G. Kresse and J. Furthm¨uller. Efficiency of ab-initio total energy calculations

for metals and semiconductors using a plane-wave basis set.

Computational Materials Science, 6(1):15 – 50, 1996.

参考文献101

[96] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39):395502, 2009.

[97] Xavier Gonze, B Amadon, P-M Anglade, Beuken, et al. ABINIT: Firstprinciples

approach to material and nanosystem properties. Computer Physics Communications, 180(12):2582–2615, 2009. Code is available at the website http://www.abinit.org. [98] D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a

Stochastic Method. Phys. Rev. Lett., 45:566–569, Aug 1980.

[99] J. P. Perdew and Alex Zunger. Self-interaction correction to densityfunctional

approximations for many-electron systems. Phys. Rev. B, 23:5048–5079, May 1981.

[100] David C. Langreth and John P. Perdew. Theory of nonuniform electronic

systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B, 21:5469–5493, Jun 1980.

[101] A. D. Becke. Density-functional exchange-energy approximation with correct

asymptotic behavior. Phys. Rev. A, 38:3098–3100, Sep 1988.

[102] Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron

density. Phys. Rev. B, 37:785–789, Jan 1988. [103]