¸ßµÈÊýѧ
?x2f(x)??,x?1,?1,x?1,
??2x?1,x?1,f?(x)???2x,x?1,?2,x?1,
Èý¡¢ÔËÓø÷ÖÖÔËËã·¨ÔòÇóµ¼Êý»ò΢·Ö
Àý1 Éèf(x)¿É΢£¬y?f(lnx)?ef(x)£¬Çódy ½â£ºdy?f(lnx)def(x)?ef(x)df(lnx) ?f?(x)ef(x)f(lnx)dx?1f?(lnx)ef(x)xdx ?ef(x)[f?(x)f(lnx)?1xf?(lnx)]dx
Àý2 Éèy?xxx(x?0)£¬Çó
dydx ½â£ºlny?xxlnx ¶ÔxÇóµ¼£¬µÃ
1yy??(xx)?lnx?1xxx ÔÙÁîyx1?x£¬lny1?xlnx£¬¶ÔxÇóµ¼£¬
1yy1??lnx?1£¬¡à (xx)??xx(lnx?1) 1ÓÚÊÇdydx??xx(lnx?1)lnx?xx?1?xxx £¨x?0£©
Àý3 Éèy?y(x)ÓÉ·½³Ìxy?yxËùÈ·¶¨£¬Çó
dydx ½â£ºÁ½±ßÈ¡¶ÔÊý£¬µÃylnx?xlny£¬
¶ÔxÇóµ¼£¬y?lnx?yx?lny?xyy? y?(xyy2?xynyy?lnx)?x?lny£¬y??x2?xylnx
28
¸ßµÈÊýѧ
Àý4 Éè
?x?teu2sinududx?t? Çó ?2tudy?y??eln(1?u)du0?2dx42dxdt2tetsint2?etsint½â£º ??dydy2e2tln(1?2t)dtËÄ¡¢ÇóÇÐÏß·½³ÌºÍ·¨Ïß·½³Ì Àý1 ÒÑÖªÁ½ÇúÏßy?f(x)Óëy?³Ì£¬²¢Çólimnf()¡£
n???arctanx0e?tdtÔڵ㣨0£¬0£©´¦µÄÇÐÏßÏàͬ£¬Ð´³ö´ËÇÐÏß·½
22ne?(arctanx)½â£ºÓÉÒÑÖªÌõ¼þ¿ÉÖªf(0)?0£¬f?(0)?1?x2¹ÊËùÇóÇÐÏß·½³ÌΪy?x
2x?0?1
2f()?f(0)2limnf()?lim2?n?2f?(0)?2 n??n??2nnÀý2 ÒÑÖªÇúÏߵļ«×ø±ê·½³Ìr?1?cos?£¬ÇóÇúÏßÉ϶ÔÓ¦ÓÚ??×ø±ê·½³Ì¡£
?6´¦µÄÇÐÏßÓë·¨ÏßµÄÖ±½Ç
?x?(1?cos?)cos??cos??cos2?½â£ºÇúÏߵIJÎÊý·½³ÌΪ?
?y?(1?cos?)sin??sin??sin?cos?dydxdy?d?dxd?cos??cos2??sin2???sin??2cos?sin??1
???6???6???6¹ÊÇÐÏß·½³Ìy?1333??1?(x??) 2424353??0 44¼´ x?y?·¨Ïß·½³Ì y?1333???(x??) 2424113??0 44¼´ x?y?
29
¸ßµÈÊýѧ
Àý
3 Éèf(x)ΪÖÜÆÚÊÇ
5
µÄÁ¬Ðøº¯Êý£¬ÔÚx?0ÁÚÓòÄÚ£¬ºãÓÐ
f(1?sixn?)f3?(1x?si?xn?¡£)ÆäÖÐxlimx?0?(x)x?0£¬f(x)ÔÚx?1´¦¿Éµ¼£¬
ÇóÇúÏßy?f(x)Ôڵ㣨6,f(6)£©´¦µÄÇÐÏß·½³Ì¡£ ½â£ºÓÉÌâÉè¿ÉÖªf(6)?f(1)£¬f?(6)?f?(1)£¬¹ÊÇÐÏß·½³ÌΪ
y?f(1)?f?(1)(x?6)
ËùÒԹؼüÊÇÇó³öf(1)ºÍf?(1)
ÓÉf(x)Á¬ÐøÐÔlim[f(1?sinx)?3f(1?sinx)]??2f(1)
x?0 ÓÉËù¸øÌõ¼þ¿ÉÖª?2f(1)?0£¬¡à f(1)?0
f(1?sinx)?3f(1?sinx)8x?(x)?lim(?)?8
x?0x?0sinxsinxsinxf(1?t)?3f(1?t)?8£¬ÓÖ¡ßf(1)?0 Áîsinx?t,limt?0tÔÙÓÉÌõ¼þ¿ÉÖªlim¡à ÉÏʽ×ó±ß=lim[f(1?t)?f(1)]f(1?t)?f(1)?3lim
t?0t?0t(?t) =f?(1)?3f?(1)?4f?(1) Ôò4f?(1)?8 f?(1)?2
ËùÇóÇÐÏß·½³ÌΪy?0?2(x?6) ¼´ 2x?y?12?0 Îå¡¢¸ß½×µ¼Êý
1£®Çó¶þ½×µ¼Êý Àý1 Éèy?ln(x?½â£ºy'?x2?a2)£¬Çóy''
(x?x2?a2)?
1x?x2?a2 ?1x?x?a22(1?3xx?a22)?1x?a22
?1xy''??(x2?a2)2?2x??
2232(x?a)?x?arctantd2yÀý2 Éè? Çó 22dx?y?ln(1?t)30
¸ßµÈÊýѧ
2tdydydt1?t2½â£º???2t
dx1dxdt1?t2dydyd()d()2dydx?dx/dx??dx2dxdtdt
2?2(1?t2) 11?t2Àý3 Éèy?y(x)ÓÉ·½³Ìx2?y2?1ËùÈ·¶¨£¬Çóy'' ½â£º2x?2yy'?0£¬y'??x yx2y??1?y?xyy y''????22yyy2?x21 ?? ??y3y32£®Çón½×µ¼Êý£¨n?2£¬ÕýÕûÊý£©
ÏÈÇó³öy?,y??,?£¬×ܽá³ö¹æÂÉÐÔ£¬È»ºóд³öy(n)£¬×îºóÓùéÄÉ·¨Ö¤Ã÷¡£ ÓÐһЩ³£ÓõijõµÈº¯ÊýµÄn½×µ¼Êý¹«Ê½ £¨1£©y?e yxx(n)?ex
(n)£¨2£©y?a(a?0,a?1) y£¨3£©y?sinx £¨4£©y?cosx £¨5£©y?lnx
?ax(lna)n
n?) 2n??cos(x?)
2y(n)?sin(x?y(n)y(n)?(?1)n?1(n?1)!x?n
Á½¸öº¯Êý³Ë»ýµÄn½×µ¼ÊýÓÐÀ³²¼Äá×ȹ«Ê½
[u(x)v(x)](n)k(k)??Cnu(x)v(n?k)(x) k?0nÆäÖÐCn?kn!(0)(0)£¬u(x)?u(x)£¬v(x)?v(x)
k!(n?k)!¼ÙÉèu(x)ºÍv(x)¶¼ÊÇn½×¿Éµ¼
31