高等数学讲义第二?- 百度文库 ر

ߵѧ

ڶ һԪ΢ѧ

2.1 ΢

ףҪ һ΢ָ 1Ķ

躯y?f(x)ڵx0ijж壬Աxx0?xӦغ?y?f(x0??x)?f(x0)

f(x0??x)?f(x0)?y?lim

?x?0?x?x?0?xlimڣƴ˼ֵΪf(x)x0ĵҲ΢̣f?(x0)y?x?x0

dydxx?x0

df(x)dxx?x0ȣƺy?f(x)ڵx0ɵļ޲ڣ

ƺy?f(x)ڵx0ɵ

һȼʽx?x0??x?x?x?x0

f?(x0)?f(x?)fx0() limx?x0x?x0Ҳർ ҵf??(x0)?lim?x?x0f(x)?f(x0)f(x0??x)?f(x0) ?lim??x?0x?x0?xf(x)?f(x0)f(x0??x)?f(x0) ?lim??x?0x?x0?xf??(x0)?lim?x?x0

f(x)ڵx0ɵ?f(x)ڵx0ҵԴȡ

y?f(x)ڵx0f?(x0)ڣڼf?(x0)ʾy?f(x)ڵ㣨x0,f(x0)ߵбʡ ߷̣y?f(x0)?f?(x0)(x?x0)

24

ߵѧ

߷̣y?f(x0)??1(x?x0)(f?(x0)?0) ?f(x0)ֱ˶ʱ·SʱtĺϵΪS?f(t)f?(t0)ڣf?(t0)ʾʱt0ʱ˲ʱٶȡ

3Ŀɵ֮Ĺϵ

y?f(x)ڵx0ɵf(x)ڵx0һ֮Ȼ

y?f(x)ڵx0ȴһڵx0ɵ磬y?f(x)?|x|x0?0

ȴɵ

4΢ֵĶ

躯y?f(x)ڵx0?xʱ?y?f(x0??x)?f(x0)ıʽ

?y?A(x0)?x?o(?x) ?x?0

o(?x)?x?0ʱ?x߽׵СA(x0)Ϊ?xΪ޹أf(x)x0΢

?yеҪԲA(x0)?xΪf(x)x0΢֣dyǶԱ΢dx?x

5΢ֵļ

x?x0df(x)x?x0

?y?f(x0??x)?f(x0)y?f(x)ڵx0Ӧ

Ա?xf(x0)΢dyx?x0

y?f(x)ڵM0(x0,f(x0))ߵӦ

ͼ

6΢ɵĹϵ

f(x)x0΢?f(x)x0ɵ

dyx?x0?A(x0)?x?f?(x0)dx

һأy?f(x)dy?f?(x)dx

25

ߵѧ

Եf?(x)?dyҲΪ΢̣΢̵֮ĺ塣 dx

7߽׵ĸ

y?f(x)ĵy??f?(x)ڵx0ǿɵģy??f?(x)ڵx0ĵΪy?f(x)ڵx0Ķ׵y??f(x)ڵx0׿ɵ

y?f(x)n?1׵ĵڣΪy?f(x)n׵y(n)

(n)x?x0d2yf??(x0)

dx2x?x0ȣҲ

ydny(x)nȣʱҲy?f(x)n׿ɵ

dx

΢ּ 1΢ֱԣ 2΢ֵ㷨

1󵼺΢ֹʽ 2󵼹ʽ

3Ϻ󵼺΢ֹʽ 4󵼷 5󵼷

6òʾ󵼹ʽ

ң

һõ

f(x)?(x?a)g(x)g(x)x?af?(a) ⣺f?(a)?limx?af(x)?f(a)(x?a)g(x)?0?lim?g(a) x?ax?ax?a

ֶκڷֶε㴦Ŀɵ 1 躯

?x2,x?1f(x)??

?ax?b,x?1ȷabֵʹf(x)ڵx?1ɵ

⣺߿ɵһf(x)x?1Ҳġ

f(x)?limx?1 f(1?0)?lim??x?1x?1226

ߵѧ

f(1?0)?limf(x)?lim(ax?b)?a?b ??x?1x?1Ҫʹf(x)ڵx?1a?b?1b?1?a

f(x)?f(1)x2?1?lim?lim(x?1)?2 f??(1)?lim??x?1?x?1x?1x?1x?1f??(1)?lim?x?1f(x)?f(1)ax?b?1a(x?1)?lim?lim?a x?1?x?1?x?1x?1x?1Ҫʹf(x)ڵx?1ɵf??(1)?f??(1)2?a.

ʵa?2,b?1?a?1?2??1ʱf(x)ڵx?1ɵ.

x2en(x?1)?ax?b2 f(x)?limabΪֵʱf(x)ɵf?(x)

n??en(x?1)?1n(x?1)??? ⣺x?1ʱlimen??x?1ʱlimen(x?1)?0

n???x2,x?1??a?b?1,x?1 f(x)??2?x?1??ax?b,f(x)?limx2?1f(1)?x?1ԣlim??x?1x?1a?b?1?1֪a?b?1 2x?1ɵԣ

x2?f(1)f??(1)?lim

x?1?x?1f??(1)?lim?x?1(ax?b)?f(1)

x?1f??(1)?f??(1)

ش﷨f??(1)?lim?x?12x?2 1a?a a?2 x?11b?1?a??1 f??(1)?lim? 27