2017年重庆市中考数学试卷(B卷) 下载本文

∴AE=∵DC∥AB,

=3,

∴△DGC∽△FGA, ∴同解法一得:CG=×∴EG=AG=AC=

=,

=

过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD, 则易证△GHF≌△FKM全等, ∴GH=FK=,HF=MK=, ∵ML=AK=AF+FK=2+=即DL=LM, ∴∠LDM=45°

∴DM在正方形对角线DB上, 过N作NI⊥AB,则NI=IB, 设NI=y, ∵NI∥EP ∴∴

,DL=AD﹣MK=4﹣=,

解得y=1.5, 所以FI=2﹣y=0.5, ∴I为FP的中点, ∴N是EF的中点, ∴EN=0.5EF=

∵△BIN是等腰直角三角形,且BI=NI=1.5, ∴BN=

,BK=AB﹣AK=4﹣

=,BM=

+

+

,MN=BN﹣BM==

=

∴△EMN的周长=EN+MN+EM=

故答案为:.

【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.

三、解答题(本大题共2个小题,每小题8分,共16分)

19.(8分)(2017?重庆)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.

【分析】由平行线的性质求出∠ABD=108°,由三角形的外角性质得出∠ABD=∠ACD+∠BDC,即可求出∠BDC的度数. 【解答】解:∵EF∥GH, ∴∠ABD+∠FAC=180°, ∴∠ABD=180°﹣72°=108°, ∵∠ABD=∠ACD+∠BDC,

∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.

【点评】本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质是解决问题的关键.

20.(8分)(2017?重庆)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:

(1)扇形统计图中“优秀”所对应的扇形的圆心角为 72 度,并将条形统计图

补充完整.

(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.

【分析】(1)由周角乘以“优秀”所对应的扇形的百分数,得出“优秀”所对应的扇形的圆心距度数;求出全年级总人数,得出“良好”的人数,补全统计图即可; (2)画出树状图,由概率公式即可得出答案. 【解答】解:(1)360°(1﹣40%﹣25%﹣15%)=72°; 故答案为:72;

全年级总人数为45÷15%=300(人), “良好”的人数为300×40%=120(人), 将条形统计图补充完整, 如图所示:

(2)画树状图,如图所示:

共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个, ∴P(选中的两名同学恰好是甲、丁)=

=.

【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.

四、简答题(本大题共4个小题,每小题10分,共40分)