MATLAB大作业 下载本文

基于MATLAB识别图片中的文字 知识点:图像识别 图像处理 计算机视觉

实验目的:以MATLAB为工具,识别图片中的文字。 问题描述:

交通是一个十分重要的问题,红绿灯上的摄像头可以辨别车主的身份。现在,我们是否能够用matlab设计一个图像识别的系统,通过车牌号的来识别相应的数字。 问题分析及模型建立: 第一步:确定车牌号的区域 对于一张图像

在matlab中,在处理图像元素时用(x,y,z)三坐标的形式表达的灰度集时,其中,x和y是空间坐标,z是f 在坐标(x,y)处的值,就可以表达图像在该坐标轴上的点。再将,将f(x,y)的数值简单地显示为一个矩阵,就可以定量地表达了一幅数值图像。

矩阵中的每个元素称为像素。

所以,如果我们想要截取一段车牌号的图像,我们就可以扫描图像每一个点的像素。然后我们进行恢复处理,算子边缘检测,腐蚀,闭操作,删除小对象得到

我们就可以利用RGB的值找到白色区域的边界,然后我们利用边界,截取我们的原图像就可以得到我们所需要的车牌号的区域了。

第二步:进行文字的分割

在进行分割之前,就需要将我们所获得的车牌号的区域的图像进行进一步的处理,突出我们需要的文字部分。 灰度处理

彩色的图片占用的空间比较大,处理会花费很长的时间,先将图片进行灰度处理

二值化

再将图片二值化,将图片的256个灰度级强制减少到只有{0, 255}2个灰度级,更加方便了后

续的文字识别识别。

均值滤波

均值滤波是对是对图像进行局部平均, 以平均值来代表该像素点的灰度值。矩形滤波器对这个二维矢量的每一个分量进行独立的平滑处理。获得一张比较干净清晰的图像。

腐蚀和膨胀

腐蚀可以分割独立的图像元素,膨胀用于连接相邻的元素,更加利于图像的分割 进行完图像的预处理,就可以开始图像的切割了

首先进行边缘的切割,处理完后的图像为黑底白字。其中黑色为0,白色1为。这样我们就可以从四个边缘进行扫描,若行或者列像素之和0的话,就为背景,这样就可以继续向内推移,直到和不为0的位置为止。这样就进行了边缘的切割。

接下来,先进行文字的切割,文字和字母、数字在长度和宽度上有较大的差别,所以需要单独的拿出来。因为号码是平铺过来的,所以我们进行列的扫描。先从最左边进行扫描,若列像素之和不为0的话,则说明有文字,直到和为0的时候停止。但是如果扫描出来的宽度太小的话就说明背景可能有白色区域干扰。这时,应该将刚刚扫描出来的区域置黑,再次进行扫描,截取图像。同理,数字和字母可同样按着上面的方式扫描,截取。

截取后的图像

模板的配对

所有的文字数字和字母都截取下来后,我们需要将所得的图片统一的量化为同样大小的图像方便比对。

统一量化后的图像

完成了这部的操作之后,就需要建立一个小型的模板库。将车牌号常见的文字、十个数字和26个英文字母存储为上面同样大小的二值化图片,并且以对应字符的名称命名。

将所有的模板放在一起,按照一定的顺序排列。然后,我们就可以调用我们已经切割好的图片和模板内部的图片进行相减,寻找差别最小的图片进行匹配,这样就可以识别出车牌号上