最新湖南省岳阳市中考试题 下载本文

∴空气质量等级为“良”的天数占:×100%=55%.

故答案为:20,8,55;

(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天), 答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天; 补全统计图:

(3)建议不要燃放烟花爆竹.

【点评】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键. 22.(8分)(2016?岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0. (1)求证:方程总有两个不相等的实数根;

(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值). 【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证. (2)把x=0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可. 【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0. ∴△=(2m+1)2﹣4m(m+1)=1>0, ∴方程总有两个不相等的实数根;

(2)∵x=0是此方程的一个根,

∴把x=0代入方程中得到m(m+1)=0, ∴m=0或m=﹣1,

∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5, 把m=0代入3m2+3m+5得:3m2+3m+5=5;

把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.

【点评】本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析. 23.(10分)(2016?岳阳)数学活动﹣旋转变换 (1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;

13

网资源www.wang26.cn

(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆. (Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论; (Ⅱ)连接A′B,求线段A′B的长度;

(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)

【分析】(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可. (2)(Ⅰ)结论:直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可.(Ⅱ)在Rt△ABB′中,利用勾股定理计算即可. (3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在Rt△A′B′B中利用勾股定理即可. 【解答】解;(1)如图①中,∵△A′B′C是由△ABC旋转得到, ∴∠A′B′C=∠ABC=130°,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=50°, ∴∠CBB′=∠CB′B=65°,

∴∠A′B′B=∠A′B′C﹣∠BB′C=65°. (2)(Ⅰ)结论:直线BB′与⊙A′相切. 理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=60°, ∴∠CBB′=∠CB′B=60°,

∴∠A′B′B=∠A′B′C﹣∠BB′C=90°. ∴AB′⊥BB′,

∴直线BB′与⊙A′相切.

(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3, ∴A′B=

=

(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切. 理由:∵∠A′B′C=∠ABC=α,CB=CB′, ∴∠CBB′=∠CB′B,∵∠BCB′=2β, ∴∠CBB′=∠CB′B=

∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°. ∴AB′⊥BB′,

∴直线BB′与⊙A′相切.

14

网资源www.wang26.cn

在△CBB′中,∵CB=CB′=n,∠BCB′=2β, ∴BB′=2?nsinβ, 在Rt△A′BB′中,A′B=

=

【点评】本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.

24.(10分)(2016?岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0). (1)求抛物线F1所表示的二次函数的表达式; (2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;

(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

15 网资源www.wang26.cn

【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;

(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边形MAOC和S△BOC,过点M作MP⊥x轴于点P,则S四边形MAOC的值等于△APM的面积与梯形POCM的面积之和.

(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:①②

=

=

【解答】解:(1)令y=0代入y=x+4, ∴x=﹣3, A(﹣3,0),

令x=0,代入y=x+4, ∴y=4, ∴C(0,4),

设抛物线F1的解析式为:y=a(x+3)(x﹣1), 把C(0,4)代入上式得,a=﹣, ∴y=﹣x2﹣x+4,

(2)如图①,设点M(a,﹣a2﹣a+4) 其中﹣3<a<0 ∵B(1,0),C(0,4), ∴OB=1,OC=4 ∴S△BOC=OB?OC=2, 过点M作MP⊥x轴于点P,

16

网资源www.wang26.cn