小学数学思想方法的梳1 下载本文

数学中的规律一般具有普遍性,但是对于小学生而言,普遍的规律往往比较抽象,较难理解和应用。如果举一些特殊的例子运用不完全归纳法加以猜测验证,也是可行的解决问题的策略。下面举例说明。

案例:任意一个大于4的自然数,拆成两个自然数之和,怎样拆分才能使这两个自然数的乘积最大?

分析:此问题如果运用一般的方法进行推理,可以设这个大于4的自然数为N。如果N为偶数,可设N=2K(K为任意大于2的自然数);那么N=K+K=(K-1)+(K+1)=(K-2)+(K+2)=?,

因为K2>K2-1>K2-4>?,

所以K×K>(K-1)×(K+1)>(K-2)×(K+2)>?,

所以把这个偶数拆分成两个相等的数的和,它们的积最大。

如果N为奇数,可设N=2K+1(K为任意大于1的自然数);那么N=K+(K+1)=(K-1)+(K+2)=(K-2)+(K+3)=?,

因为K2+K>K2+K-2>K2+K-6>?,

所以K×(K+1)>(K-1)×(K+2)>(K-2)×(K+3)>?,

所以把这个奇数拆分成两个相差1的数的和,它们的积最大。

仔细观察问题可以发现,题中的自然数只要大于4, 便存在一种普遍的规律;因此,取几个具体的特殊的数,也应该存在这样的规律。这时就可以把一般问题转化为特殊问题,仅举几个有代表性的比较小的数(只要大于4)进行枚举归纳,如10,11等,就可以解决问题,具体案例见前文。

化归思想作为最重要的数学思想之一,在学习数学和解决数学问题的过程中无所不在,对于学生而言,要学会善于运用化归的思想方法解决各种复杂的问题,最终达到在数学的世界里举重若轻的境界。