else {
p->rear= ; tail=p->rear; p->data[tail]=x; return (1); }
}
int DEQUEUEQS(SeqQueue *p,datatype *px) {
datatype Member1;
if(p->front==p->rear) {printf(¡°\\n¶ÓÁпÕÀ²£¡\\n¡±);return else{
p->front= ; Member1=p->data[p->front]; *px= ; return (1); } }
/*Îļþmyqueue.h*/ /*²âÊÔ³ÌÐò²¿·Ö*/ #include
int i,abc[10]={9,8,7,6,5,4,3,2,1,10}; datatype in1,out1; SeqQueue myQue,*pQ; pQ=&myQue; SETNULLQS(pQ);
printf(¡°½øÈë¶ÓÁеÄÔªËØÒÀ´ÎÊÇ£º\\n¡±); for(i=1;i<=10;i++) {
printf(¡°%d\\t¡±,abc[i-1]); in1=abc[i-1];
ENQUEUEQS(pQ,in1); }
printf(¡°\\n´Ó¶ÓÁÐÖÐɾ³ýµÄÔªËØÒÀ´ÎÊÇ£º\\n¡±); for(i=1;i<=10;i++) {
in1=abc[i-1];
DEQUEUEQS(pQ,&out1); printf(¡°%d\\t¡±,out1); }
0£©;} £¨}
6. ÏÂÃæÒ»¶Î³ÌÐòµÄ¹¦ÄÜÊÇÍê³ÉÏßÐÔ±íµÄ²åÈë²Ù×÷ÔËËã(ÒªÔÚÏßÐÔ±íµÄµÚi¸öλÖòåÈëÔªËØ)
Çë×ÐϸÔĶÁ³ÌÐò£¬Íê³ÉÁ½¸öÒªÇó£º
(1) ÔÚ»Ï߿հ״¦ÌîÈëºÏÊʵÄÓï¾ä£¬Ê¹µÃÕû¸ö³ÌÐòÍêÕû£» (2) Ç뻳öÒÔϳÌÐòµÄÁ÷³Ìͼ¡£ #define Maxlen 1024 struct sqlisttp { int elem[maxlen]; int last; } sqlisttp;
int Insert(sqlisttp L, int i, int x) { int k; if(i<1|| i>v.last+1)
printf(¡°²åÈëλÖò»ºÏÊÊ£¡\\n¡±) else if(v.lat>=maxlen-1) printf(¡°ÏßÐÔ±íÒÑÂú£¡\\n¡±) else { for(k=v.last; k>=i; k--) £» £» £» } }
·ÇÏßÐÔÊý¾Ý½á¹¹²¿·Ö£º
Ò»¡¢Ìî¿ÕÌâ
1. ²»¿¼ÂÇ˳ÐòµÄ3¸ö½áµã¿É¹¹³É ÖÖ²»Í¬ÐÎ̬µÄÊ÷£¬ ÖÖ²»Í¬ÐÎ̬µÄ¶þ²æÊ÷¡£ 2. ÒÑ֪ij¿ÃÍêÈ«¶þ²æÊ÷µÄµÚ4²ãÓÐ5¸ö½áµã£¬Ôò¸ÃÍêÈ«¶þ²æÊ÷Ò¶×Ó½áµãµÄ×ÜÊý
Ϊ£º ¡£
3. ÒÑÖªÒ»¿ÃÍêÈ«¶þ²æÊ÷µÄµÚ5²ãÓÐ3¸ö½áµã£¬ÆäÒ¶×Ó½áµãÊýÊÇ ¡£
4. Ò»¿Ã¾ßÓÐ110¸ö½áµãµÄÍêÈ«¶þ²æÊ÷£¬Èôi£½54£¬Ôò½áµãiµÄË«Ç×±àºÅÊÇ £»½áµãi
µÄ×óº¢×Ó½áµãµÄ±àºÅÊÇ £¬½áµãiµÄÓÒº¢×Ó½áµãµÄ±àºÅÊÇ ¡£
5. Ò»¿Ã¾ßÓÐ48¸ö½áµãµÄÍêÈ«¶þ²æÊ÷£¬Èôi£½20£¬Ôò½áµãiµÄË«Ç×±àºÅÊÇ______£»½áµãi
µÄ×óº¢×Ó½áµã±àºÅÊÇ______£¬ÓÒº¢×Ó½áµã±àºÅÊÇ______¡£ 6. ÔÚÓÐn¸öÒ¶×Ó½áµãµÄHuffmanÊ÷ÖУ¬×ܵĽáµãÊýÊÇ£º______¡£
7. ͼÊÇÒ»ÖÖ·ÇÏßÐÔÊý¾Ý½á¹¹£¬ËüÓÉÁ½¸ö¼¯ºÏV(G)ºÍE(G)×é³É£¬V(G)ÊÇ______µÄ·Ç¿ÕÓÐÏÞ
¼¯ºÏ£¬E(G)ÊÇ______µÄÓÐÏÞ¼¯ºÏ¡£
8. ±éÀúͼµÄ»ù±¾·½·¨ÓÐ ÓÅÏÈËÑË÷ºÍ ÓÅÏÈËÑË÷Á½ÖÖ·½·¨¡£ 9. ͼµÄ±éÀú»ù±¾·½·¨ÖÐ ÊÇÒ»¸öµÝ¹é¹ý³Ì¡£
10. n¸ö¶¥µãµÄÓÐÏòͼ×î¶àÓÐ Ìõ»¡£»n¸ö¶¥µãµÄÎÞÏòͼ×î¶àÓÐ Ìõ±ß¡£ 11. ÔÚ¶þ²æÊ÷µÄ¶þ²æÁ´±íÖУ¬ÅжÏijָÕëpËùÖ¸½áµãÊÇÒ¶×Ó½áµãµÄÌõ¼þÊÇ ¡£ 12. ÔÚÎÞÏòͼGµÄÁÚ½Ó¾ØÕóAÖУ¬ÈôA[i,j]µÈÓÚ1£¬ÔòA[j,i]µÈ
ÓÚ ¡£
¶þ¡¢µ¥ÏîÑ¡ÔñÌâ
1. Ê÷ÐͽṹµÄÌØµãÊÇ£ºÈÎÒâÒ»¸ö½áµã£º£¨ £©
A¡¢¿ÉÒÔÓжà¸öÖ±½ÓǰÇ÷ B¡¢¿ÉÒÔÓжà¸öÖ±½Óºó¼Ì C¡¢ÖÁÉÙÓÐ1¸öǰÇ÷ D¡¢Ö»ÓÐÒ»¸öºó¼Ì 2. ÈçÏÂͼËùʾµÄ4¿Ã¶þ²æÊ÷ÖУ¬£¨ £©²»ÊÇÍêÈ«¶þ²æÊ÷¡£
A B C D
3. Éî¶ÈΪ5µÄ¶þ²æÊ÷ÖÁ¶àÓУ¨ £©¸ö½áµã¡£
A¡¢16 B¡¢32 C¡¢31 D¡¢10 4. 64¸ö½áµãµÄÍêÈ«¶þ²æÊ÷µÄÉî¶ÈΪ£º£¨ £©¡£
A¡¢8 B¡¢7 C¡¢6 D¡¢5 5. ½«Ò»¿ÃÓÐ100¸ö½áµãµÄÍêÈ«¶þ²æÊ÷´Ó¸ùÕâÒ»²ã¿ªÊ¼£¬Ã¿Ò»²ã´Ó×óµ½ÓÒÒÀ´Î¶Ô½áµã½øÐбà
ºÅ£¬¸ù½áµã±àºÅΪ1£¬Ôò±àºÅΪ49µÄ½áµãµÄ×óº¢×ӵıàºÅΪ£º£¨ £©¡£ A¡¢98 B¡¢99 C¡¢50 D¡¢48 6. ÔÚÒ»¸öÎÞÏòͼÖУ¬ËùÓж¥µãµÄ¶ÈÖ®ºÍµÈÓÚ±ßÊýµÄ£¨ £©±¶¡£ A¡¢1/2 B¡¢1 C¡¢2 D¡¢4
7. ÉèÓÐ13¸öÖµ£¬ÓÃËüÃÇ×é³ÉÒ»¿ÃHuffmanÊ÷£¬Ôò¸ÃHuffmanÊ÷Öй²ÓÐ( )¸ö½áµã¡£ A¡¢13 B¡¢12 C¡¢26 D¡¢25
8. Èô¶ÔÒ»¿ÃÓÐ16¸ö½áµãµÄÍêÈ«¶þ²æÊ÷°´²ã±àºÅ£¬Ôò¶ÔÓÚ±àºÅΪ7µÄ½áµãx£¬ËüµÄË«Ç×½á
µã¼°ÓÒº¢×Ó½áµãµÄ±àºÅ·Ö±ðΪ( )¡£
A¡¢2,14 B¡¢2,15 C¡¢3,14 D¡¢3,15
9. Èô¶ÔÒ»¿ÃÓÐ20¸ö½áµãµÄÍêÈ«¶þ²æÊ÷°´²ã±àºÅ£¬Ôò¶ÔÓÚ±àºÅΪ5µÄ½áµãx£¬ËüµÄË«Ç×½á
µã¼°×óº¢×Ó½áµãµÄ±àºÅ·Ö±ðΪ( )¡£
A¡¢2,11 B¡¢2,10 C¡¢3,9 D¡¢3,10 10. ½«Ò»¿ÃÓÐ100¸ö½áµãµÄÍêÈ«¶þ²æÊ÷´Ó¸ùÕâÒ»²ã¿ªÊ¼£¬Ã¿Ò»²ã´Ó×óµ½ÓÒÒÀ´Î¶Ô½áµã½øÐбà
ºÅ£¬¸ù½áµã±àºÅΪ1£¬Ôò±àºÅ×î´óµÄ·ÇÒ¶½áµãµÄ±àºÅΪ£º
A¡¢48 B¡¢49 C¡¢50 D¡¢51 11. ÎÞÏòͼµÄÁÚ½Ó¾ØÕóÊÇÒ»¸ö( )¡£ A¡¢¶Ô³Æ¾ØÕó B¡¢Áã¾ØÕó C¡¢ÉÏÈý½Ç¾ØÕó D¡¢¶Ô½Ç¾ØÕó 12. ÓÉ64¸ö½áµã¹¹³ÉµÄÍêÈ«¶þ²æÊ÷£¬ÆäÉî¶ÈΪ£º( )¡£ A¡¢8 B¡¢7 C¡¢6 D¡¢5
13. Èô¶ÔÒ»¿ÃÓÐ16¸ö½áµãµÄÍêÈ«¶þ²æÊ÷°´²ã±àºÅ£¬Ôò¶ÔÓÚ±àºÅΪ7µÄ½áµãx£¬ËüµÄË«Ç×½á
µã¼°ÓÒº¢×Ó½áµãµÄ±àºÅ·Ö±ðΪ( )¡£
A¡¢2,14 B¡¢2,15 C¡¢3,14 D¡¢3,15 14. ͼʾ¶þ²æÊ÷µÄÖÐÐò±éÀúÐòÁÐÊÇ£º£¨ £© a
b c
d g
e
f
A¡¢abcdgef B¡¢dfebagc C¡¢dbaefcg D¡¢defbagc 15. ͼʾ¶þ²æÊ÷µÄºóÐò±éÀúÐòÁÐÊÇ£º£¨ £©
A
B C
E D
F G H
A¡¢ABCDEFGH B¡¢BDAFEHGC C¡¢DBFHGECA D¡¢HGFEDCBA 16. ÁÚ½Ó±íÊÇͼµÄÒ»ÖÖ£¨ £©¡£
A¡¢Ë³Ðò´æ´¢½á¹¹ B¡¢Á´Ê½´æ´¢½á¹¹ C¡¢Ë÷Òý´æ´¢½á¹¹ D¡¢É¢Áд洢½á¹¹ 17. ¸ø¶¨ÓÐÏòͼÈçÓÒͼËùʾ£¬Ôò¸ÃͼµÄÒ»¸öÇ¿Á¬Í¨·ÖÁ¿ÊÇ£º£¨ £©¡£ A¡¢{A,B,C,F} B¡¢{B,C,F} C¡¢{B,C,D,F} D¡¢{C,D,E,F}
18. ÒÑÖªÒ»¸öÓÐÏòͼµÄÁÚ½Ó¾ØÕó±íʾ£¬ÒªÉ¾³ýËùÓдӵÚi¸ö½áµã·¢³öµÄ±ß£¬Ó¦¸Ã£º A¡¢½«ÁÚ½Ó¾ØÕóµÄµÚiÐÐɾ³ý B¡¢½«ÁÚ½Ó¾ØÕóµÄµÚiÐÐÔªËØÈ«²¿ÖÃΪ0 C¡¢½«ÁÚ½Ó¾ØÕóµÄµÚiÁÐɾ³ý D¡¢½«ÁÚ½Ó¾ØÕóµÄµÚiÁÐÔªËØÈ«²¿ÖÃΪ0