计算思维
一.计算思维的定义
计算思维是运用计算机科学的基础概念进行问题求解、系统设计、以及人类行为理解等涵盖计算机科学之广度的一系列思维活动。 进一步地定义为:
1.通过约简、嵌入、转化和仿真等方法,把一个看来困难的问题重新阐释成一个我们知道问题怎样解决的方法;
2.是一种递归思维,是一种并行处理,是一种把代码译成数据又能把数据译成代码,是一种多维分析推广的类型检查方法;
3.是一种采用抽象和分解来控制庞杂的任务或进行巨大复杂系统设计的方法,是基于关注分离的方法(S oc方法);
4.是一种选择合适的方式去陈述一个问题,或对一个问题的相关方面建模使其易于处理的思维方法;
5.是按照预防、保护及通过冗余、容错、纠错的方式,并从最坏情况进行系统恢复的一种思维方法;
6.是利用启发式推理寻求解答,也即在不确定情况下的规划、学习和调度的思维方法;
7.是利用海量数据来加快计算,在时间和空间之间,在处理能力和存储容量之间进行折衷的思维方法。
计算思维吸取了问题解决所采用的一般数学思维方法,现实世界中巨大复杂系统的设计与评估的一般工程思维方法,以及复杂性、智能、心理、人类行为的理解等的一般科学思维方法。
二.计算思维的深层次理解 1.计算思维的优点
计算思维建立在计算过程的能力和限制之上,由人由机器执行。计算方法和模型使我们敢于去处理那些原本无法由个人独立完成的问题求解和系统设计。 2.计算思维的内容
计算思维最根本的内容,即其本质(Essence)是抽象(Abstraction)和自动化(Automation)。计算思维中的抽象完全超越物理的时空观,并完全用符号来表示,其中,数字抽象只是一类特例。与数学和物理科学相比,计算思维中的抽象显得更为丰富,也更为复杂。数学抽象的最大特点是抛开现实事物的物理、化学和生物学等特性,而仅保留其量的关系和空间的形式,而计算思维中的抽象却不仅仅如此。操作模式 计算思维建立在计算过程的能力和限制之上,由人由机器执行。计算方法和模型使我们敢于去处理那些原本无法由任何个人独自完成的问题求解和系统设计。 3.计算思维用途
计算思维是每个人的基本技能,不仅仅属于计算机科学家。我们应当使每个孩子在培养解析能力时不仅掌握阅读、写作和算术(Reading, writing, and arithmetic——3R),还要学会计算思维。正如印刷出版促进了3R的普及,计算和计算机也以类似的正反馈促进了计算思维的传播。
计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为。它包括了涵盖计算机科学之广度的一系列思维活动。 当我们必须求解一个特定的问题时,首先会问:解决这个问题有多么困难?怎样才是最佳的解决方法?计算机科学根据坚实的理论基础来准确地回答这些问题。表述问题的难度就是工具的基本能力,必须考虑的因素包括机器的指令系统、资源约束和操作环境。
为了有效地求解一个问题,我们可能要进一步问:一个近似解是否就够了,是否可以利用一下随机化,以及是否允许误报(false positive)和漏报(false negative)。计算思维就是通过约简、嵌入、转化和仿真等方法,把一个看来困难的问题重新阐释成一个我们知道怎样解决的问题。
4.计算思维是一种递归思维
它是并行处理。它是把代码译成数据又把数据译成代码。它是由广义量纲分析进行的类型检查。对于别名或赋予人与物多个名字的做法,它既知道其益处又了解其害处。对于间接寻址和程序调用的方法,它既知道其威力又了解其代价。它评价一个程序时,不仅仅根据其准确性和效率,还有美学的考量,而对于系统的设计,还考虑简洁和优雅。
5.抽象和分解
来迎接庞杂的任务或者设计巨大复杂的系统。它是关注的分离(SOC方法)。它是选择合适的方式去陈述一个问题,或者是选择合适的方式对一个问题的相关方面建模使其易于处理。它是利用不变量
简明扼要且表述性地刻画系统的行为。它使我们在不必理解每一个细节的情况下就能够安全地使用、调整和影响一个大型复杂系统的信息。它就是为预期的未来应用而进行的预取和缓存。计算思维是按照预防、保护及通过冗余、容错、纠错的方式从最坏情形恢复的一种思维。它称堵塞为“死锁”,称约定为“界面”。计算思维就是学习在同步相互会合时如何避免“竞争条件”(亦称“竞态条件”)的情形。计算思维利用启发式推理来寻求解答,就是在不确定情况下的规划、学习和调度。它就是搜索、搜索、再搜索,结果是一系列的网页,一个赢得游戏的策略,或者一个反例。计算思维利用海量数据来加快计算,在时间和空间之间,在处理能力和存储容量之间进行权衡。
计算思维将渗透到我们每个人的生活之中,到那时诸如算法和前提条件这些词汇将成为每个人日常语言的一部分,对“非确定论”和“垃圾收集”这些词的理解会和计算机科学里的含义驱近,而树已常常被倒过来画了。
6.计算思维在其他学科中的影响
例如,机器学习已经改变了统计学。就数学尺度和维数而言,统计学习用于各类问题的规模仅在几年前还是不可想象的。各种组织的统计部门都聘请了计算机科学家。计算机学院(系)正在与已有或新开设的统计学系联姻。
计算机学家们对生物科学越来越感兴趣,因为他们坚信生物学家能够从计算思维中获益。计算机科学对生物学的贡献决不限于其能够在海量序列数据中搜索寻找模式规律的本领。最终希望是数据结构和
算法(我们自身的计算抽象和方法)能够以其体现自身功能的方式来表示蛋白质的结构。计算生物学正在改变着生物学家的思考方式。类似地,计算博弈理论正改变着经济学家的思考方式,纳米计算改变着化学家的思考方式,量子计算改变着物理学家的思考方式。
这种思维将成为每一个人的技能组合成分,而不仅仅限于科学家。普适计算之于今天就如计算思维之于明天。普适计算是已成为今日现实的昨日之梦,而计算思维就是明日现实。
计算机科学是计算的学问——什么是可计算的,怎样去计算。计算机科学不是计算机编程。像计算机科学家那样去思维意味着远不止能为计算机编程,还要求能够在抽象的多个层次上思维。 7.计算思维是根本的,不是刻板的技能
根本技能是每一个人为了在现代社会中发挥职能所必须掌握的。刻板技能意味着机械的重复。具有讽刺意味的是,当计算机像人类一样思考之后,思维可就真的变成机械的了。 8.计算思维是人的,不是计算机的思维方式
计算思维是人类求解问题的一条途径,但决非要使人类像计算机那样地思考。计算机枯燥且沉闷,人类聪颖且富有想象力。是人类赋予计算机激情。配置了计算设备,我们就能用自己的智慧去解决那些在计算时代之前不敢尝试的问题,实现“只有想不到,没有做不到”的境界。
9.计算思维是数学和工程思维的互补与融合
计算机科学在本质上源自数学思维,因为像所有的科学一样,其
形式化基础建筑于数学之上。计算机科学又从本质上源自工程思维,因为我们建造的是能够与实际世界互动的系统,基本计算设备的限制迫使计算机学家必须计算性地思考,不能只是数学性地思考。构建虚拟世界的自由使我们能够设计超越物理世界的各种系统。 10.计算思维是思想,不是人造物
不只是我们生产的软件硬件等人造物将以物理形式到处呈现并时时刻刻触及我们的生活,更重要的是还将有我们用以接近和求解问题、管理日常生活、与他人交流和互动的计算概念;而且,面向所有的人,所有地方。当计算思维真正融入人类活动的整体以致不再表现为一种显式之哲学的时候,它就将成为一种现实。 三.计算思维的延展 1.计算思维意识
计算思维是一种科学思维,与理论思维、实验思维一起构成了人类的三大思维。
计算思维并不是一种新的发明,而是早已存在的思维活动,是每一个人都具有的一种技能。 2.计算思维方法
计算思维方法是计算思维的核心。
计算思维方法很多,周以真教授将计算思维阐述成具体的七大类方法。总的来说,计算机思维方法有两大类:一类是来自数学和工程的方法,另一类是计算机科学独有的方法。例如,对于计算积分,学习数学的人通过函数变换求解积分,而计算机是通过对积分区间进行N
等分然后累加各小区间的面积来实现。学习数学的人不会采用后一种方法,后一种方法只
有掌握了计算机技术的人才采用,但是仍然来自数学。
在大学计算机基础课程中,几乎每一个概念对应一种计算思维方法。例如,Cache
是预置和缓存方法,多核处理器是并行外理方法;在程序设计课程中,各种常用算法以及各类问题的求解方法,如迭代法、递归法等,都是没有争议的计算思维方法;在计算机应用课程中,每一门课程每一个项目都是多种计算思维方法的集合。 3.计算思维能力
计算思维的根本目的是解决问题,即问题求解系统设计以及人类行为理解。
从计算机应用的角度来说,解决问题就是计算机的应用问题。例如,设计一个数据库应用系统、创建一个电子商务网站、制造一个机器人等都是计算机应用问题,是计算思维的目的所在。 四.计算思维与大学生
计算思维反映了计算机学科最本质的特征和最核心的解决问题方法。计算思维旨在提高大学生的信息素养,培养学生发明和创新的能力及处理计算机问题时应有的思维方法、表达形式和行为习惯。信息素养要求大学生能够对获取的各种信息通过自己的思维进行深层次的加工和处理,从而产生新信息。计算思维在一定程度上像是教学生“怎么像计算机科学家一样思维”
五.总结
计算机科学在本质上源自数学思维,它的形式化基础建筑于数学之上。计算机科学又从本质上源自工程思维,因为我们建造的是能够与现实世界互动的系统。所以计算思维是数学与工程思维的互补与融合。计算思维无处不在,当计算思维真正融入人类活动的整体时,它作为一个问题解决的有效工具,人人都应掌握,处处都会被使用。