C£®c1δÊäÈ룬c2ÊÇ¡®A¡¯ D£®c1ÊÇ¡®A¡¯£¬c2ÊÇ¡®\\n¡¯ 5£®a¡¢bÊÇÕûÐͱäÁ¿£¬Ö´ÐÐÓï¾ä¡°scanf(\£¬b=%d\£¬&a£¬&b)£»¡±£¬Ê¹aºÍbµÄÖµ·Ö±ðΪ1ºÍ2£¬ÕýÈ·µÄÊäÈëÊÇ£¨ £©¡£
A£®1 2 B£®1£¬2 C£®a=1£¬b=2 D£®a=1 b=2 6£®ÉècΪ×Ö·ûÐͱäÁ¿ÖµÎª¡®A¡¯£¬aΪÕûÐͱäÁ¿ÖµÎª97£¬Ö´ÐÐÓï¾ä¡°putchar(c)£»putchar(a)£»¡±ºó£¬Êä³ö½á¹ûΪ£¨ £©¡£
A£®Aa B£®A97 C£®A9 D£®aA
7£®ÒÑÖª×ÖĸAµÄASCIIÂëֵΪ65£¬ÒÔÏÂÓï¾ä¶ÎµÄÊä³ö½á¹ûÊÇ£¨ £©¡£
char c1='A',c2='Y'; printf(\A£®Êä³ö¸ñʽ·Ç·¨£¬Êä³ö´íÎóÐÅÏ¢ B£®65£¬90 C£®A£¬Y D£®65£¬89
8£®ÈôҪʹÓÃÊäÈëÓï¾ä¡°scanf(\£¬&i£¬&j£¬&x)£»¡±£¬ÎªiÊäÈë£10£¬ÎªjÊäÈë12£¬ÎªxÊäÈë345.67£¬ÔòÕýÈ·µÄÊäÈëÐÎʽÊÇ£¨ £©¡£
A£®¨C1012345.67¨L B£®¨C10 12 345.67¨L C£®¨C10001200345.67¨L D£®¨C10,12,345.67¨L 9£®ÄÜÕýÈ·µØ¶¨Òå·ûºÅ³£Á¿µÄÊÇ£¨ £©¡£
A£®#define n=10 B£®#define n 10 C£®#define n 10£» D£®#DEFINE N 10 10£®ÔÚCÓïÑÔÖУ¬int¡¢char¡¢shortÈýÖÖÀàÐÍÊý¾ÝÔÚÄÚ´æÖÐËùÕ¼µÄ×Ö½ÚÊý£¨ £©¡£ A£®ÓÉÓû§×Ô¼º¶¨Òå B£®¾ùΪ2¸ö×Ö½Ú C£®ÊÇÈÎÒâµÄ D£®ÓÉ»úÆ÷×Ö³¤¾ö¶¨
½â£º(1) D (2) A (3) B (4) D (5) C (6) A (7) D (8) B (9) B (10) D Îå¡¢Ìî¿ÕÌâ
1£®char ch='$'£»float x=153.4523£» Óï¾ä¡°printf(\¨C8.2f\\\\n\£»¡±µÄÊä³ö½á¹ûÊÇ ¡£ ½â£º$153.45 \\n
2£®int i=123£»float x= ¨C 1234.56789£» Óï¾ä¡°printf(\ x=%7.3f\\n\£»¡±µÄÊä³ö½á¹ûÊÇ ¡£ ½â£ºi= 123 x=-1234.568
3£®char c='a'£»int a=65£» Óï¾ä¡°putchar(c+1);putchar(a)£»¡±µÄÊä³ö½á¹ûÊÇ ¡£ ½â£ºbA
4£®int a=98£»
Óï¾ä¡°printf(¡°%d,%c,%o,%x¡±,a,a+1,a+2,a+3);¡±µÄÊä³ö½á¹ûÊÇ ¡£ ½â£º98,c,144,65
5£®int k; float f;
Óï¾ä¡°scanf(¡°=%*4do¡±,&k,&f);¡±Ö´ÐÐʱÊäÈë 12345678765.43¨L Ôò k= £¬f= ¡£ ½â£ºk=123 f=8765.4
6£®Ê¹ÓÃpow()º¯Êýʱ£¬³ÌÐòµÄ¿ªÍ·±ØÐëдһÌõÔ¤´¦ÀíÃüÁ ¡£ ½â£º#include
(1)int i=123,j=45;
º¯Êýprintf(\µÄÊä³ö½á¹ûÊÇ ¡£ ½â£º123,45
4
(2)int i=123; float x=-45.678;
Óï¾äprintf(\µÄÊä³ö½á¹ûÊÇ ¡£ ½â£ºi= 123 x=-45.6780 (3)float alfa=60,pi=3
ϰ Ìâ 3
Ò»¡¢¸ù¾ÝÏÂÁÐÊýѧʽ£¬Ð´³öCµÄËãÊõ±í´ïʽ¡£
1ab?c?d 2c?da?2b?cd?(a2?b3)?y42?10tan?1x??4
2|sin(x)|3.5x6?e5½â£º-(a+b)¡Áy µÄC±í´ïʽ£º-(a*a+b*b)*pow(y,4)
22
2?102 µÄC±í´ïʽ£º(sqrt(2)+10*10)/(pow(tan(x),-1)+3.141593) ?1tanx?? |sin(x)|653.5 µÄC±í´ïʽ£ºsqrt(pow (fabs (sin(x)),3.5))
x?e µÄC±í´ïʽ£ºpow(x,6)-exp(5)
1ab?c?d2 µÄC±í´ïʽ£º(1.0/2*a*b+c+d)/(a+2*b-(c+d)/c/d)
c?da?2b?cd¶þ¡¢°´ÕÕÒªÇó£¬Ð´³öÏÂÁÐCµÄ±í´ïʽ¡£
1£®Ð´³öintÀàÐͱäÁ¿xΪ¡°ÆæÊý¡±µÄ±í´ïʽ¡£ ½â£ºx%2==1
2£®IntÀàÐͱäÁ¿x¡¢y¡¢z£¬Ð´³öÃèÊö¡°x»òyÖÐÓÐÇÒ½öÓÐÒ»¸öСÓÚz¡±µÄ±í´ïʽ¡£ ½â£ºx 3£®½«doubleÀàÐͱäÁ¿y±£ÁôËÄλСÊýµÄ±í´ïʽ¡£ ½â£º(int)(y*10000+0.5)/10000.0 4£®Îª±äÁ¿s¸³Öµ£ºÈ¡±äÁ¿x µÄ·ûºÅ£¬È¡±äÁ¿yµÄ¾ø¶ÔÖµ¡£ ½â£ºs=(x>=0?1:-1)*(y>=0?y:-y) 5£®Ìõ¼þ¡°-5¡Üx¡Ü3¡±Ëù¶ÔÓ¦µÄCÂß¼±í´ïʽ¡£ ½â£º-5<=x&&x<=3 6£®a¡¢bÊÇ×Ö·û±äÁ¿£¬ÒÑÖªaµÄֵΪ´óд×Öĸ¡¢bµÄֵΪСд×Öĸ£¬Ð´³öÅжÏa¡¢bÊÇ·ñΪͬһ×Öĸ(²»Çø·Ö´óСд)µÄÂß¼±í´ïʽ ½â£ºa+32==b »ò b-a==32?1:0 7£®intÀàÐͱäÁ¿a¡¢b¾ùΪÁ½Î»ÕýÕûÊý£¬Ð´³öÅжÏaµÄ¸öλÊýµÈÓÚbµÄʮλÊý¡¢ÇÒbµÄ¸öλÊýµÈÓÚaµÄʮλÊýµÄÂß¼±í´ïʽ¡£ ½â£ºa==b/10&&a/10==b 8£®Ð´³öÅжÏij¸öÈËÊÇ·ñÊdzÉÄêÈË(ÄêÁä´óÓÚ21)£¬ÇÒ²»ÊÇÀÏÄêÈË(ÄêÁä´óÓÚ65)µÄÂß¼±í´ïʽ¡£ 5 ½â£ºy>21&&y<=65 9£®Ð´³öÈ¡±äÁ¿a¡¢b¡¢cÖÐ×î´óÖµµÄÌõ¼þ±í´ïʽ¡£ ½â£º(a>b?a:b)>c?(a>b?a:b):c 10£®Èô×Ö·û±äÁ¿chΪСд×Öĸ£¬Ôò½«Æäת»»Îª¶ÔÓ¦µÄ´óд×Öĸ¡£ ½â£ºch=ch>='a'&&ch<='z'?ch-32:ch Èý¡¢µ¥ÏîÑ¡ÔñÌâ 1£®Éèint x=3£¬y=4£¬z=5£»£¬ÏÂÁбí´ïʽÖÐֵΪ0µÄÊÇ£¨ £©¡£ A£®'x'&&'y' B. x<=y C£®x||y+z&&y¨Cz D. !((x A£®'0'<=c<='9' B£®'0'<=c&&c<='9' C£®c>='0'||c<='9' D£®c>=0&&c<=9 4£®ÏÂÁÐÔËËã·ûÖУ¬ÓÅÏȼ¶×îµÍµÄÊÇ£¨ £©¡£ A£®£¿£º B£®&& C£®= = D£®*= 5£®ÈôÓÐÌõ¼þ±í´ïʽ¡°x?a++:b--¡±£¬ÔòÒÔϱí´ïʽÖУ¨ £©µÈ¼ÛÓÚ±í´ïʽx¡£ A£®x==0 B£®x!=0 C£®x==1 D£®x!=1 6£®Óж¨Òåint k=4£¬a=3£¬b=2£¬c=1£»£¬±í´ïʽ¡°k a=(--x= =y++)?--x£º++y£»b=x++£»c=y£» A£®a=9£¬b=9£¬c=9 B£®a=8£¬b=8£¬c=10 C£®a=9£¬b=10£¬c=9 D£®a=1£¬b=11£¬c=10 8£®Óж¨Òåint a=9£»£¬Óï¾ä¡°a+=a¨C =a+a£»¡±Ö´Ðк󣬱äÁ¿µÄÖµÊÇ£¨ £©¡£ A£®18 B£®9 C£®¨C18 D£®¨C9 9£®ÉèxºÍy¾ùΪintÐͱäÁ¿£¬ÔòÓï¾ä¡°x+=y£»y=x¨Cy£»x¨C =y£»¡±µÄ¹¦ÄÜÊÇ£¨ £©¡£ A£®°ÑxºÍy°´´ÓСµ½´óÅÅÁÐ B£®°ÑxºÍy°´´Ó´óµ½Ð¡ÅÅÁÐ C£®ÎÞÈ·¶¨½á¹û D£®½»»»xºÍyÖеÄÖµ 10£®Óж¨Òådouble x=1£¬y£»£¬±í´ïʽ¡°y=x+3/2¡±µÄÖµÊÇ£¨ £©¡£ A£®1 B£®2 C£®2.0 D£®2.5 11£®ÉèÓж¨Òåint x;double y£»£¬ÔòÏÂÁбí´ïʽÖнá¹ûΪÕûÐ͵ÄÊÇ£¨ £©¡£ A. (int)y+x B£®(int)x+y C£®int(y+x) D£®(double)x+y 12£®ÉèÓÐÕûÐͱäÁ¿x£¬ÏÂÁÐ˵·¨ÖУ¬´íÎóµÄÊÇ£¨ £©¡£ A£®¡°5.0¡±²»ÊDZí´ïʽ B£®¡°x¡±ÊDZí´ïʽ C£®¡°£¡x¡±ÊDZí´ïʽ D£®¡°sqrt(x)¡±ÊDZí´ïʽ ½â£º(1)D (2)B (3)B (4)D (5)B (6)D (7)B (8)C (9)D (10)C (11)A (12)A ËÄ¡¢Ìî¿ÕÌâ¡£ 1£®Éèfloat x=2.5,y=4.7; int a=7;£¬±í´ïʽ x+a%3*(int)(x+y)%2/4 ֵΪ ¡£ ½â£º2.5 2£®Éèint x=2£¬y=3£»£¬Ö´ÐÐÓï¾ä¡°x*=x+y¡±ºóxµÄֵΪ ¡£ ½â£º10 3£®Éèint x=17£¬y=5£»£¬Ö´ÐÐÓï¾ä¡°x%=x¨Cy¡±ºóxµÄֵΪ ¡£ ½â£º5 6 4£®Éè int a=6,b=4,c=2;£¬±í´ïʽ !(a-b)+c-1&&b-c/2 µÄֵΪ ¡£ ½â£º1 5£®Éè int a=2,b=4,x,y;£¬±í´ïʽ!(x=a)||(y=b)&&!(2-3.5) µÄֵΪ ¡£ ½â£º0 6£®ÅжϱäÁ¿a¡¢bÊÇ·ñ¾ø¶ÔÖµÏàµÈ¶ø·ûºÅÏà·´µÄÂß¼±í´ïʽΪ ¡£ ½â£ºa==-b 7£®ÅжϱäÁ¿a¡¢bÖбØÓÐÇÒÖ»ÓÐÒ»¸öΪ0µÄÂß¼±í´ïʽΪ ¡£ ½â£ºa*b==0&&a+b!=0 8£®Éèint m=2,n=2,a=1,b=2,c=3;Ö´ÐÐÓï¾äd=(m=a==b)&&(n=b>c);ºó£¬mºÍnµÄÖµ·Ö±ðΪ ¡£ ½â£ºmΪ0£¬nΪ2 9£®Éèint a=2£»£¬±í´ïʽ¡°a%2!=0¡±µÄֵΪ ¡£ ½â£º0 10£®Éèchar c='y'£»£¬±í´ïʽ¡°c>='a'&&c<='z'|| c>='A'&&c<='Z'¡±µÄֵΪ ¡£ ½â£º1 x+2 11£®Ð´³öÓë´úÊýʽ (x+2)e ¶ÔÓ¦µÄC±í´ïʽ ¡£ ½â£º(x+2)*exp(x+2) 12£®Éèint a=2;Ö´ÐÐÓï¾äa=3*5,a*4;ºóaµÄֵΪ ¡£ ½â£º15 Î塢д³öÏÂÁгÌÐòµÄÊä³ö½á¹û¡£ 1£® #include unsigned k,n; scanf(\ÊäÈëÊý¾ÝΪ£º69 k=n*10+n/10; printf(\} ½â£ºn=69 k=96 2£® #include int x=2,y=3; x*=y+4; printf(\x/=y=5; printf(\x-=y%2; printf(\} ½â£º14,3 7