ͬ¼ÃµÚÁù¡¶¸ßµÈÊýѧ¡·½Ì°¸word-µÚ02Õ µ¼ÊýÓë΢·Ö ÏÂÔØ±¾ÎÄ

(6)(cot x)csc2

x (7)(sec x)sec xtan x (8)(csc x)csc xcot x

(9)(a x)a x ln a

(10)(e x)ex (11) (logax)??1xlna

(12) (lnx)??1x (13) (arcsinx)??11?x2 (14) (arccosx)???11?x2

(15) (arctanx)??11?x2 (16) (arccotx)???11?x2

2£®º¯ÊýµÄºÍ¡¢²î¡¢»ý¡¢É̵ÄÇóµ¼·¨Ôò Éèuu(x) vv(x)¶¼¿Éµ¼ Ôò (1)(u v)uv (2)(C u)C u (3)(u v)uvuv (4)(u)??u?v?uv?vv2

3£®·´º¯ÊýµÄÇóµ¼·¨Ôò Éèxf(y)ÔÚÇø¼äIy ÄÚµ¥µ÷¡¢¿Éµ¼ÇÒf (y)0ÄÚÒ²¿Éµ¼ ²¢ÇÒ [f?1(x)]??1f?(y) »ò

dy1dx?dx

dy 4£®¸´ºÏº¯ÊýµÄÇóµ¼·¨Ôò

Éèyf(x) ¶øug(x)ÇÒf(u)¼°g(x)¶¼¿Éµ¼

dydx?dydudu?dx»òy(x)f (u)g(x)

Àý16 ÇóË«ÇúÕýÏÒsh xµÄµ¼Êý. ½â ÒòΪsh x?12(ex?e?x) ËùÒÔ

(sh x)??12(ex?e?x)??12(ex?e?x)?ch x

ÔòËüµÄ·´º¯Êýyf1 (x)ÔÚIxf(Iy)

Ôò¸´ºÏº¯Êýyf[g(x)]µÄµ¼ÊýΪ

¼´ (sh x)ch x ÀàËÆµØ ÓÐ (ch x)sh x

Àý17 ÇóË«ÇúÕýÇÐth xµÄµ¼Êý ½â ÒòΪth x?sh xch x ËùÒÔ

(th x)??ch2x?sh2xch2x?1ch2x

Àý18 Çó·´Ë«ÇúÕýÏÒarsh xµÄµ¼Êý ½â ÒòΪarsh x?ln(x?1?x2) ËùÒÔ

(arsh x)??11?x2?(1?x1?x2)?1x?1?x2

ÓÉarch x?ln(x?x2?1) ¿ÉµÃ(arch x)??1x2?1

ÓÉarth x?12ln1?x1?x ¿ÉµÃ(arth x)??11?x2

ÀàËÆµØ¿ÉµÃ(arch x)??1x2?1 (arth x)??11?x2

Àý19£®ysin nxsinn

x (nΪ³£Êý) Çóy

½â y(sin nx) sin n x + sin nx (sin n

x)

ncos nx sin n x+sin nx n sin n1

x (sin x ) ncos nx sin n x+n sin n1 x cos x n sin n1

x

n+1)x sin( ¡ì2. 3 ¸ß½×µ¼Êý

Ò»°ãµØ º¯Êýyf(x)µÄµ¼Êýyf (x)ÈÔÈ»ÊÇx µÄº¯Êý ÎÒÃǰÑy¡¢f

(x)»ò

d2ydx2f (x)

µÄµ¼Êý½Ð×öº¯Êýyf(x)µÄ¶þ½×µ¼Êý ¼Ç×÷ y¼´ y(y)

f

(x)[f (x)]

d2yddy 2?()dxdxdx ÏàÓ¦µØ °Ñyf(x)µÄµ¼Êýf (x)½Ð×öº¯Êýyf(x)µÄÒ»½×µ¼Êý

ÀàËÆµØ ¶þ½×µ¼ÊýµÄµ¼Êý ½Ð×öÈý½×µ¼Êý Èý½×µ¼ÊýµÄµ¼Êý½Ð×öËĽ׵¼Êý °ãµØ (n1)½×µ¼ÊýµÄµ¼Êý½Ð×ön ½×µ¼Êý ·Ö±ð¼Ç×÷

Ò»

y y (4)

y (n)

»ò

d3ydx3

d4ydx4

dnydxn

º¯Êýf(x)¾ßÓÐn ½×µ¼Êý Ò²³£Ëµ³Éº¯Êýf(x)Ϊn ½×¿Éµ¼ Èç¹ûº¯Êýf(x)ÔÚµãx ´¦¾ßÓÐn ½×µ¼Êý ÄÇôº¯Êýf(x)ÔÚµãx µÄijһÁÚÓòÄڱض¨¾ßÓÐÒ»ÇеÍÓÚn ½×µÄµ¼Êý ¶þ½×¼°¶þ½×ÒÔÉϵĵ¼Êýͳ³Æ¸ß½×µ¼Êý

(4)(n)

y³ÆÎªÒ»½×µ¼Êý y y y y¶¼³ÆÎª¸ß½×µ¼Êý

Àý1£®yax b Çóy ½â ya y0 Àý2£®ssin t Çós

2

½â s cos t ssin t Àý3£®Ö¤Ã÷ º¯Êýy?2x?x2Âú×ã¹ØÏµÊ½yy Ö¤Ã÷ ÒòΪy??2?2x?1?x22x?x22x?x2 3

10

?2x?x2?(1?x)2?2x1122x?x2??2x?x2?(1?x)2???? y???3y32x?x2(2x?x2)(2x?x2)(2x?x2)2

ËùÒÔyy10

x

Àý4£®Çóº¯ÊýyeµÄn ½×µ¼Êý ½â yex yex yex y( 4)ex Ò»°ãµØ ¿ÉµÃ

( n)

yex

x(n)

¼´ (e)ex

Àý5£®ÇóÕýÏÒº¯ÊýÓëÓàÏÒº¯ÊýµÄn ½×µ¼Êý ½â ysin x

3

y??cosx?sin(x? ?)2

y???cos(x? ?)?sin(x? ?? ?)?sin(x?2? ?2222)

y????cos(x?2? ?2)?sin(x?2? ?2? ?2)?sin(x?3? ?2)

y(4)?cos(x?3? ?)?sin(x?4? ?22)

Ò»°ãµØ ¿ÉµÃ

y(n)?sin(x?n? ?2) ¼´(sinx)(n)?sin(x?n? ?2)

ÓÃÀàËÆ·½·¨ ¿ÉµÃ(cosx)(n)?cos(x?n? ?2)

Àý6£®Çó¶Ôº¯Êýln(1x)µÄn ½×µ¼Êý

½â yln(1x) y(1x)1

y(1x)2

y(1)(2)(1x)3 y(4)

(1)(2)(3)(1x)

4

Ò»°ãµØ ¿ÉµÃ y(n)

(1)(2)

(n1)(1x)n?(?1)n?1(n?1)!(1?x)n

¼´ [ln(1?x)](n)?(?1)n?1(n?1)!(1?x)n

Àý6£®ÇóÃݺ¯Êýyx

(ÊÇÈÎÒâ³£Êý)µÄn ½×µ¼Êý¹«Ê½ ½â yx1

y(1)x2

y(1)(2)x3

y ( 4)(1)(2)(3)x4

Ò»°ãµØ ¿ÉµÃ

y (n)

(1)(2) (n1)xn

¼´ (x )(n)

(1)(2) (n1)xn µ±nʱ µÃµ½

(xn)(n)

(1)(2) 3 2 1n!

¶ø (x n)( n1)

0

Èç¹ûº¯Êýuu(x)¼°vv(x)¶¼ÔÚµãx ´¦¾ßÓÐn ½×µ¼Êý ÄÇôÏÔÈ»º¯Êýu(x)ÔÚµãx ´¦¾ßÓÐn ½×µ¼Êý ÇÒ

(uv)(n)

u(n)v(n) (uv)uvuv (uv)uv2uvuv (uv)uv3uv3uvuv ÓÃÊýѧ¹éÄÉ·¨¿ÉÒÔÖ¤Ã÷

(uv)(n)??nCnku(n?k)v(k)

k?0(x)Ò²

v