(uvw)u (uvw)[(uv)w]
v
(uv)w(uv)w
(uvuv)wwuvwuvwuvwuvw¼´ (uvw)
uvwuvwuvw
ÔÚ·¨Ôò(2)ÖÐ Èç¹ûvC(CΪ³£Êý) ÔòÓÐ (Cu)Cu
3 2
Àý1£®y2x5x3x7 Çóy
3 2 3 2
½â y(2x5x3x7) (2x)5x)
2
5 x) 3 x)
2 2
23x52x36x10x3
Àý2 f(x)?x3?4cosx?sin ?2 Çóf (x)¼°f?( ?)2
3x)7) 2 (x)
3
½â f?(x)?(x3)??(4cosx)??(sin ?)??3x2?4sinx2 f?( ?)?3?2?424 x
Àý3£®ye(sin xcos x) Çóy ½â ye x )(sin xcos x) e x (sin xcos x)
x x
e(sin xcos x) e(cos x sin x)
x
2ecos x Àý4£®ytan x Çóy (sinx)?cosx?sinx(cosx)? ½â y??(tanx)??(sinx)??cosxcos2x?
22?cosx?2sinx?12?sec2xcosxcosx¼´ (tan x)secx
Àý5£®ysec x Çóy2
sec x tan x
(1)?cosx?1?(cosx)?sinx? ½â y??(secx)??(1)??cosxcos2xcos2x¼´ (sec x)sec x tan x
ÓÃÀàËÆ·½·¨ »¹¿ÉÇóµÃÓàÇк¯Êý¼°Óà¸îº¯ÊýµÄµ¼Êý¹«Ê½
2
(cot x)cscx (csc x)csc x cot x
¶þ¡¢·´º¯ÊýµÄÇóµ¼·¨Ôò
¶¨Àí2 Èç¹ûº¯Êýxf(y)ÔÚÄ³Çø¼äIy ÄÚµ¥µ÷¡¢¿Éµ¼ÇÒf (y)1
(x)ÔÚ¶ÔÓ¦Çø¼äIx{x|xf(y) yIy}ÄÚÒ²¿Éµ¼ ²¢ÇÒ
0 ÄÇôËüµÄ·´º¯Êýyf
[f?1(x)]??1f?(y) »ò
dy1?dxdxdy
¼òÒªÖ¤Ã÷ ÓÉÓÚxf(y)ÔÚI yÄÚµ¥µ÷¡¢¿Éµ¼(´Ó¶øÁ¬Ðø) ËùÒÔxf(y)µÄ·´º¯Êýyf1
(x)´æÔÚ 1
ÇÒf(x)ÔÚI xÄÚÒ²µ¥µ÷¡¢Á¬Ðø
ÈÎÈ¡x I x ¸øxÒÔÔöÁ¿x(x0 xxI x) ÓÉyf 1(x)µÄµ¥µ÷ÐÔ¿ÉÖª
yf 1
(xx)f 1(x)0 ÓÚÊÇ
?y?x?1?x
?yÒòΪyf
1
(x)Á¬Ðø ¹Ê
limx?0?y?0
´Ó¶ø
[f?1(x)]???lim?yx?0?x??lim1y?0?x?1f?(y)
?y ÉÏÊö½áÂۿɼòµ¥µØËµ³É ·´º¯ÊýµÄµ¼ÊýµÈÓÚÖ±½Óº¯Êýµ¼ÊýµÄµ¹Êý
Àý6£®Éèxsin y y?[? ?2, ?2]Ϊֱ½Óº¯Êý Ôòyarcsin xÊÇËüµÄ·´º¯Êýxsin yÔÚ¿ªÇø¼ä(? ?2, ?2)ÄÚµ¥µ÷¡¢¿Éµ¼ ÇÒ
(sin y)cos y0
Òò´Ë ÓÉ·´º¯ÊýµÄÇóµ¼·¨Ôò ÔÚ¶ÔÓ¦Çø¼äI x(1 1)ÄÚÓÐ (arcsinx)??1)??1cosy?11?sin2y?1(siny1?x2
ÀàËÆµØÓÐ (arccosx)???11?x2
Àý7£®Éèxtan y y?(? ?, ?22)Ϊֱ½Óº¯Êý Ôòyarctan xÊÇËüµÄ·´º¯Êýxtan yÔÚÇø¼ä(? ? ?2, 2)ÄÚµ¥µ÷¡¢¿Éµ¼ ÇÒ
(tan y)sec2
y0
Òò´Ë ÓÉ·´º¯ÊýµÄÇóµ¼·¨Ôò ÔÚ¶ÔÓ¦Çø¼äI x( )ÄÚÓÐ
(arctanx)??1?1?11(tany)?sec2y1?tan2y?1?x2
º¯Êý
º¯Êý
ÀàËÆµØÓÐ (arccotx)??? y11?x2
º¯Êýxa y Àý8Éèxa(a0 a 1)Ϊֱ½Óº¯Êý Ôòyloga xÊÇËüµÄ·´º¯ÊýÔÚÇø¼äI y( )ÄÚµ¥µ÷¡¢¿Éµ¼ ÇÒ
y (a)a y ln a 0
Òò´Ë ÓÉ·´º¯ÊýµÄÇóµ¼·¨Ôò ÔÚ¶ÔÓ¦Çø¼äI x(0 )ÄÚÓÐ
1?1 (logax)??1?(ay)?aylnaxlna
µ½Ä¿Ç°ÎªÖ¹ Ëù»ù±¾³õµÈº¯ÊýµÄµ¼ÊýÎÒÃǶ¼Çó³öÀ´ÁË ÄÇôÓÉ»ù±¾³õµÈº¯Êý¹¹³ÉµÄ½Ï¸´ÔӵijõµÈº¯ÊýµÄµ¼ÊýÈç¿ÉÇóÄØ£¿È纯Êýlntan x ¡¢ex3¡¢µÄµ¼ÊýÔõÑùÇó£¿
Èý¡¢¸´ºÏº¯ÊýµÄÇóµ¼·¨Ôò
¶¨Àí3 Èç¹ûug(x)ÔÚµãx¿Éµ¼yf[g(x)]ÔÚµãx¿Éµ¼ ÇÒÆäµ¼ÊýΪ
dydydy?f?(u)?g?(x)»ò??dudxdudxdx º¯Êýyf(u)ÔÚµãug(x)¿Éµ¼ Ôò¸´ºÏº¯Êý
Ö¤Ã÷ µ±ug(x)ÔÚxµÄijÁÚÓòÄÚΪ³£Êýʱ y=f[(x)]Ò²Êdz£Êý ´Ëʱµ¼ÊýΪÁã
½áÂÛ×ÔÈ»³ÉÁ¢
µ±ug(x)ÔÚxµÄijÁÚÓòÄÚ²»µÈÓÚ³£Êýʱ u0 ´ËʱÓÐ
?yf[g(x??x)]?f[g(x)]f[g(x??x)]?f[g(x)]g(x??x)?g(x) ????x?xg(x??x)?g(x)?xf(u??u)?f(u)g(x??x)?g(x)??u?x ?
(u)g (x )
dy?yf(u??u)?f(u)g(x??x)?g(x)?lim?lim?lim= f
?x?0dx?x?0?x?u?0?u?x ¼òÒªÖ¤Ã÷
dy?y?y?u?y?lim?lim??lim?lim?u?f?(u)g?(x)dx?x?0?x?x?0?u?x?u?0?u?x?0?x
Àý9 y?ex3 Çó
dydx
u ½â º¯Êýy?ex3¿É¿´×÷ÊÇÓÉye
dydyduu2???e?3x?3x2ex3dxdudx ux¸´ºÏ¶ø³ÉµÄ Òò´Ë
3
Àý10 y?sin2x1?x2 Çó
dydx sin u
u?2x¸´ºÏ¶ø³ÉµÄ1?x2 ½â º¯Êýy?sin2xÊÇÓÉy1?x2
Òò´Ë
dydx?dydu?dudx?cosu?2(1?x2)?(2x)22(1?x2)2x(1?x2)2?(1?x2)2?cos1?x2
¶Ô¸´ºÏº¯ÊýµÄµ¼Êý±È½ÏÊìÁ·ºó ¾Í²»±ØÔÙд³öÖмä±äÁ¿ Àý11£®lnsin x Çódydx
½â
dydx?(lnsinx)??1sinx?(sinx)??1sinx?cosx?cotx
Àý12£®y?31?2x2 Çó
dydx
½â
dydx?[(1?2x2)13]??1?2?4x3(1?2x2)3?(1?2x2)??33(1?2x2)2
¸´ºÏº¯ÊýµÄÇóµ¼·¨Ôò¿ÉÒÔÍÆ¹ãµ½¶à¸öÖмä±äÁ¿µÄÇéÐÎ
u(v) v(x) Ôò
dydydudydx?du?dx?du?dudv?dvdx Àý13£®ylncos(e x) Çódydx
½â
dydx?[lncos(ex)]??1cos(ex)?[cos(ex)]? ?1cos(ex)?[?sin(ex)]?(ex)???extan(ex)
Àý14£®y?esin1x Çó
dydx
½â
dydx?(esin1x)??esin1x?(sin1x)??esin1x?cos1x?(1x)?
??1sin12?ex?cos1xx
Àý15Éèx0 Ö¤Ã÷Ãݺ¯ÊýµÄµ¼Êý¹«Ê½
(x ) x 1
½â ÒòΪx (e ln x)e ln x ËùÒÔ
(x )(e ln x) e ln x( ln x) e
ln x
ËÄ¡¢»ù±¾Çóµ¼·¨ÔòÓëµ¼Êý¹«Ê½
1£®»ù±¾³õµÈº¯ÊýµÄµ¼Êý (1)(C)0
(2)(x) x1
(3)(sin x)cos x (4)(cos x)sin x
(5)(tan x)sec2
x
ÀýÈç
Éèyf(u)x1
x 1