ͬ¼ÃµÚÁù¡¶¸ßµÈÊýѧ¡·½Ì°¸word-µÚ02Õ µ¼ÊýÓë΢·Ö ÏÂÔØ±¾ÎÄ

(uvw)u (uvw)[(uv)w]

v

(uv)w(uv)w

(uvuv)wwuvwuvwuvwuvw¼´ (uvw)

uvwuvwuvw

ÔÚ·¨Ôò(2)ÖÐ Èç¹ûvC(CΪ³£Êý) ÔòÓÐ (Cu)Cu

3 2

Àý1£®y2x5x3x7 Çóy

3 2 3 2

½â y(2x5x3x7) (2x)5x)

2

5 x) 3 x)

2 2

23x52x36x10x3

Àý2 f(x)?x3?4cosx?sin ?2 Çóf (x)¼°f?( ?)2

3x)7) 2 (x)

3

½â f?(x)?(x3)??(4cosx)??(sin ?)??3x2?4sinx2 f?( ?)?3?2?424 x

Àý3£®ye(sin xcos x) Çóy ½â ye x )(sin xcos x) e x (sin xcos x)

x x

e(sin xcos x) e(cos x sin x)

x

2ecos x Àý4£®ytan x Çóy (sinx)?cosx?sinx(cosx)? ½â y??(tanx)??(sinx)??cosxcos2x?

22?cosx?2sinx?12?sec2xcosxcosx¼´ (tan x)secx

Àý5£®ysec x Çóy2

sec x tan x

(1)?cosx?1?(cosx)?sinx? ½â y??(secx)??(1)??cosxcos2xcos2x¼´ (sec x)sec x tan x

ÓÃÀàËÆ·½·¨ »¹¿ÉÇóµÃÓàÇк¯Êý¼°Óà¸îº¯ÊýµÄµ¼Êý¹«Ê½

2

(cot x)cscx (csc x)csc x cot x

¶þ¡¢·´º¯ÊýµÄÇóµ¼·¨Ôò

¶¨Àí2 Èç¹ûº¯Êýxf(y)ÔÚÄ³Çø¼äIy ÄÚµ¥µ÷¡¢¿Éµ¼ÇÒf (y)1

(x)ÔÚ¶ÔÓ¦Çø¼äIx{x|xf(y) yIy}ÄÚÒ²¿Éµ¼ ²¢ÇÒ

0 ÄÇôËüµÄ·´º¯Êýyf

[f?1(x)]??1f?(y) »ò

dy1?dxdxdy

¼òÒªÖ¤Ã÷ ÓÉÓÚxf(y)ÔÚI yÄÚµ¥µ÷¡¢¿Éµ¼(´Ó¶øÁ¬Ðø) ËùÒÔxf(y)µÄ·´º¯Êýyf1

(x)´æÔÚ 1

ÇÒf(x)ÔÚI xÄÚÒ²µ¥µ÷¡¢Á¬Ðø

ÈÎÈ¡x I x ¸øxÒÔÔöÁ¿x(x0 xxI x) ÓÉyf 1(x)µÄµ¥µ÷ÐÔ¿ÉÖª

yf 1

(xx)f 1(x)0 ÓÚÊÇ

?y?x?1?x

?yÒòΪyf

1

(x)Á¬Ðø ¹Ê

limx?0?y?0

´Ó¶ø

[f?1(x)]???lim?yx?0?x??lim1y?0?x?1f?(y)

?y ÉÏÊö½áÂۿɼòµ¥µØËµ³É ·´º¯ÊýµÄµ¼ÊýµÈÓÚÖ±½Óº¯Êýµ¼ÊýµÄµ¹Êý

Àý6£®Éèxsin y y?[? ?2, ?2]Ϊֱ½Óº¯Êý Ôòyarcsin xÊÇËüµÄ·´º¯Êýxsin yÔÚ¿ªÇø¼ä(? ?2, ?2)ÄÚµ¥µ÷¡¢¿Éµ¼ ÇÒ

(sin y)cos y0

Òò´Ë ÓÉ·´º¯ÊýµÄÇóµ¼·¨Ôò ÔÚ¶ÔÓ¦Çø¼äI x(1 1)ÄÚÓÐ (arcsinx)??1)??1cosy?11?sin2y?1(siny1?x2

ÀàËÆµØÓÐ (arccosx)???11?x2

Àý7£®Éèxtan y y?(? ?, ?22)Ϊֱ½Óº¯Êý Ôòyarctan xÊÇËüµÄ·´º¯Êýxtan yÔÚÇø¼ä(? ? ?2, 2)ÄÚµ¥µ÷¡¢¿Éµ¼ ÇÒ

(tan y)sec2

y0

Òò´Ë ÓÉ·´º¯ÊýµÄÇóµ¼·¨Ôò ÔÚ¶ÔÓ¦Çø¼äI x( )ÄÚÓÐ

(arctanx)??1?1?11(tany)?sec2y1?tan2y?1?x2

º¯Êý

º¯Êý

ÀàËÆµØÓÐ (arccotx)??? y11?x2

º¯Êýxa y Àý8Éèxa(a0 a 1)Ϊֱ½Óº¯Êý Ôòyloga xÊÇËüµÄ·´º¯ÊýÔÚÇø¼äI y( )ÄÚµ¥µ÷¡¢¿Éµ¼ ÇÒ

y (a)a y ln a 0

Òò´Ë ÓÉ·´º¯ÊýµÄÇóµ¼·¨Ôò ÔÚ¶ÔÓ¦Çø¼äI x(0 )ÄÚÓÐ

1?1 (logax)??1?(ay)?aylnaxlna

µ½Ä¿Ç°ÎªÖ¹ Ëù»ù±¾³õµÈº¯ÊýµÄµ¼ÊýÎÒÃǶ¼Çó³öÀ´ÁË ÄÇôÓÉ»ù±¾³õµÈº¯Êý¹¹³ÉµÄ½Ï¸´ÔӵijõµÈº¯ÊýµÄµ¼ÊýÈç¿ÉÇóÄØ£¿È纯Êýlntan x ¡¢ex3¡¢µÄµ¼ÊýÔõÑùÇó£¿

Èý¡¢¸´ºÏº¯ÊýµÄÇóµ¼·¨Ôò

¶¨Àí3 Èç¹ûug(x)ÔÚµãx¿Éµ¼yf[g(x)]ÔÚµãx¿Éµ¼ ÇÒÆäµ¼ÊýΪ

dydydy?f?(u)?g?(x)»ò??dudxdudxdx º¯Êýyf(u)ÔÚµãug(x)¿Éµ¼ Ôò¸´ºÏº¯Êý

Ö¤Ã÷ µ±ug(x)ÔÚxµÄijÁÚÓòÄÚΪ³£Êýʱ y=f[(x)]Ò²Êdz£Êý ´Ëʱµ¼ÊýΪÁã

½áÂÛ×ÔÈ»³ÉÁ¢

µ±ug(x)ÔÚxµÄijÁÚÓòÄÚ²»µÈÓÚ³£Êýʱ u0 ´ËʱÓÐ

?yf[g(x??x)]?f[g(x)]f[g(x??x)]?f[g(x)]g(x??x)?g(x) ????x?xg(x??x)?g(x)?xf(u??u)?f(u)g(x??x)?g(x)??u?x ?

(u)g (x )

dy?yf(u??u)?f(u)g(x??x)?g(x)?lim?lim?lim= f

?x?0dx?x?0?x?u?0?u?x ¼òÒªÖ¤Ã÷

dy?y?y?u?y?lim?lim??lim?lim?u?f?(u)g?(x)dx?x?0?x?x?0?u?x?u?0?u?x?0?x

Àý9 y?ex3 Çó

dydx

u ½â º¯Êýy?ex3¿É¿´×÷ÊÇÓÉye

dydyduu2???e?3x?3x2ex3dxdudx ux¸´ºÏ¶ø³ÉµÄ Òò´Ë

3

Àý10 y?sin2x1?x2 Çó

dydx sin u

u?2x¸´ºÏ¶ø³ÉµÄ1?x2 ½â º¯Êýy?sin2xÊÇÓÉy1?x2

Òò´Ë

dydx?dydu?dudx?cosu?2(1?x2)?(2x)22(1?x2)2x(1?x2)2?(1?x2)2?cos1?x2

¶Ô¸´ºÏº¯ÊýµÄµ¼Êý±È½ÏÊìÁ·ºó ¾Í²»±ØÔÙд³öÖмä±äÁ¿ Àý11£®lnsin x Çódydx

½â

dydx?(lnsinx)??1sinx?(sinx)??1sinx?cosx?cotx

Àý12£®y?31?2x2 Çó

dydx

½â

dydx?[(1?2x2)13]??1?2?4x3(1?2x2)3?(1?2x2)??33(1?2x2)2

¸´ºÏº¯ÊýµÄÇóµ¼·¨Ôò¿ÉÒÔÍÆ¹ãµ½¶à¸öÖмä±äÁ¿µÄÇéÐÎ

u(v) v(x) Ôò

dydydudydx?du?dx?du?dudv?dvdx Àý13£®ylncos(e x) Çódydx

½â

dydx?[lncos(ex)]??1cos(ex)?[cos(ex)]? ?1cos(ex)?[?sin(ex)]?(ex)???extan(ex)

Àý14£®y?esin1x Çó

dydx

½â

dydx?(esin1x)??esin1x?(sin1x)??esin1x?cos1x?(1x)?

??1sin12?ex?cos1xx

Àý15Éèx0 Ö¤Ã÷Ãݺ¯ÊýµÄµ¼Êý¹«Ê½

(x ) x 1

½â ÒòΪx (e ln x)e ln x ËùÒÔ

(x )(e ln x) e ln x( ln x) e

ln x

ËÄ¡¢»ù±¾Çóµ¼·¨ÔòÓëµ¼Êý¹«Ê½

1£®»ù±¾³õµÈº¯ÊýµÄµ¼Êý (1)(C)0

(2)(x) x1

(3)(sin x)cos x (4)(cos x)sin x

(5)(tan x)sec2

x

ÀýÈç

Éèyf(u)x1

x 1