7-9 ÊÔÇó³öÈçͼËùʾµç·µÄÈë¶Ë×迹Z(j2)¡£Èç¹ûÔڴ˵ç·ÉÏÊ©¼ÓÕýÏÒµçѹԴVs(t)=sqrt(2)*10sin2t£¬ÔòÔÚÇó³ö¸÷Ôª¼þÉϵĵçѹÏàÁ¿VR1,VL£¬VcºÍVR2,²¢×ö³öÏàÁ¿Í¼¡£
½â£º
Ìâ9£®9ͼ
7-10 ¶ÔÈçͼËùʾµÄÌÝÐÎÍøÂ磺 a. ÊÔÇóÆäÈë¶Ëµ¼ÄÉY(j2)£»
b. ÊÔ¼ÆËãÓÉÕýÏÒµçѹVs(t)=2sin2tÒýÆðµÄÕýÏÒÎÈ̬µçÁ÷i1(t)ºÍi2(t)£» c. ÊÔ¾ö¶¨I2/Vs¡£
½â£ºÌâ9£®10ͼ a)
b)Áî Ôò ÓÖ
Áî
c)
7-11 ÈçͼaËùʾµÄñîºÏµç¸ÐÆ÷¾ßÓеç¸Ð¾ØÕó
£¬
ÊÔÇó¸½Í¼bºÍcÖÐËÄÖÖÁ¬½ÓµÄµÈЧµç¸Ð¡£ ½â£º
(a)
(b) Ìâ9£®11ͼ
Óɵç¸Ð¾ØÕóÖª £¬£¬
b£©Öд®ÁªµÈЧµç¸Ð
²¢ÁªµÈЧµç¸Ð
c£©Öд®ÁªµÈЧµç¸Ð
(c)
²¢ÁªµÈЧµç¸Ð
7-12 ÊÔÎÊL1,L2,MÓëLa,Lb,n1/n2Ö®¼ä¾ßÓкÎÖÖ¹ØÏµ£¬Í¼aµÄÍøÂç²ÅÓëͼbµÄÍøÂçµÈЧ¡£
½â£º
(a)
Ìâ9£®12ͼ
a. ÖÐÍøÂçµÄ¶þ¶Ë¿Ú·½³ÌÊÇ£º
(b)
b. ÖÐÍøÂçµÄ¶þ¶Ë¿Ú·½³ÌÊÇ£º
ÀíÏë±äѹÆ÷ÓÐ ´úÈëµÃ£º
Èôa£©Óëb£©¶þ¶Ë¿ÚµÈЧ£¬Ôò±ØÐëÂú×ã¹ØÏµ
7-13 ÊÔÇóÈçͼËùʾµç·µÄÈë¶Ë×迹£º a. µ±2£¬2'¼ä¿ªÂ·£» b. µ±2£¬2'¼ä¶Ì·¡£