的球型蛋白,常以非共价键与膜上其他成分相连,易于用人工方法从膜上分离下来。镶嵌蛋白以不同的程度镶嵌于脂质双分子层中,并以共价键与膜脂相结合,故不易人工分离。有些镶嵌蛋白贯穿分布于脂双分子层成为跨膜蛋白。这些蛋白质在细胞膜中具有极重要的作用,发挥着多方面的功能。它们有些是转运物质进出细胞的载体;有些是能接受化学信号的受体;还有些是催化某种反应的酶等。膜脂与膜蛋白在细胞膜中的分布都是不对称的,糖类是细胞膜中不可缺少的成分,常以低聚糖或多聚糖的形式共价结合于膜蛋白或膜脂分子上,形成糖蛋白或糖脂,但大部分糖分子都结合于膜蛋白、而且暴露于细胞表面的膜蛋白分子上大多都连有糖残基,这样,位于细胞外表面与膜蛋白或膜脂相连的糖残基链便形成了一种特殊的构造——细胞被或糖萼。细胞膜中的糖分子也具有多方面的功能,与细胞保护、细胞识别、细胞免疫等重要反应有着密切的关系。
2.质膜具有特殊的理化性质,它们集中表现在2个方面:膜的不对称性和流动性。换句话说,不对称性和流动性是细胞膜最基本的特性。细胞膜的不对称性是由膜脂分布的不对称性和膜蛋白分布的不对称性所决定的。膜脂分布的不对称性表现在:①膜内层和外层所含脂质分子的种类不同;②膜内外磷脂层所带电荷不同;③膜内外层磷脂分子中脂肪酸的饱和度不同;④糖脂均分布在外层脂质中。
膜蛋白的不对称性主要表现在①糖蛋白的糖链主要分布在膜的外表面;②膜受体分子均分布在膜外层脂质分子中;③腺苷酸环化酶分布在膜的内表面。所以膜蛋白的分布是绝对不对称的。
膜的流动性是由膜内部脂质分子和蛋白质分子的运动性所决定的。膜脂的流动性和膜蛋白的运动性使得细胞膜成为一种动态结构。膜脂分子的运动表现在:①侧向扩散运动;②旋转运动;③摆动运动;④伸缩振荡运动;⑤旋转异构化运动;⑥翻转运动。膜蛋白的分子运动则包括侧向扩散运动和旋转扩散运动等。研究发现,有多种因素可影响膜脂或整个细胞膜的流动性:①胆固醇,这种分子分布于质膜的磷脂分子之间,其疏水的甾环区(尾部)与磷脂的脂肪酸链相互作用,可防止脂肪酸链的相互凝集从而维持细胞膜的流动性,防止温度降低时膜流动性的突然降低;同时,胆固醇分子还具有增强质膜稳定性的作用;②磷脂分子脂肪酸链的不饱和程度和链长,这两种因素对膜的流动性有显著影响;脂肪酸的不饱和程度越高说明所含双键愈多,而双键处易发生弯曲使磷脂的尾部难以靠近,其结果是磷脂分子的尾部排列较松,从而维持了膜的流动性;脂肪酸链如较长可使脂质分子尾部相互作用加强,膜的流动性下降;而短链则会减弱相互作用,使膜流动性升高;③卵磷脂与鞘磷脂的比例,这两种磷脂在结构上差别较大,流动性不同;卵磷脂不饱和程度高,链较短,故卵磷脂与鞘磷脂的比值高时膜流动性大;比值下降时膜的流动性随之下降。总之,流动性是质膜的一种基本特性,必须保持在适当程度才能保证质膜的正常功能。当细胞对其膜的流动性失去自我调节能力时将会发生膜的功能障碍或细胞病变。
★3.主动转运是细胞膜的一项基本功能,它是利用膜中的载体蛋白在消耗代谢能的条件下将某种物质逆浓度梯度进行的跨膜转运。Na+-K+泵就是细胞膜中存在的一种能利用 ATP的能量主动转运钠和钾逆浓度梯度进出细胞的载体蛋白。Na+-K+泵具有ATP酶的活性,能水解ATP获取其中的能量,故又称为Na+-K+ATP酶,所进行的是由ATP直接提供能量的主动运
++
输。Na-K泵由α和β2个亚基组成,均为跨膜蛋白。α亚基较大,分子量为120kD,而β亚基较小,分子量为50kD。在α亚基的外侧(朝细胞外的一面)具有2个K+的结合位点,内侧(朝细胞内的一面)具有3个 Na+的结合位点和一个催化ATP水解的位点。其工作程序是,细胞内的Na+与大亚基上的 Na+位点相结合,同时ATP分子被催化水解,使大亚基上的一个天冬氨酸残基发生磷酸化(即加上一个磷酸基团)。磷酸化过程改变 Na+-K+泵的空间构象,使3个Na+排出胞外;同时,胞外的K+与α亚基外侧面的相应位点结合,大亚基去磷酸化(将磷酸基团水解下来),使α亚基空间结构再次改变(恢复原状),将2个K+输入细胞,到此便完成了Na+-K+泵的整个循环。 Na+-K+泵的每次循环消耗一个 ATP分子,转运3个Na+出胞和2个K+入胞。
4.单位膜是细胞膜和胞内膜等生物膜在电镜下均可呈现的三夹板式结构,上下两层为电子密度较高的暗层,而中间为电子密度低的明层。在20世纪50~60年代,人 们将具有两暗一明结构的膜称为单位膜。如今,单位膜仅是能部分反映生物膜结构特点的质膜和胞内膜的代名词。流动镶嵌模型是在单位膜模型的基础上,由Singer和Nicolson在1972年提出的一个反映生物膜特性的分子结构模型。该模型强调膜的流动性和膜蛋白分布的不对称
29
性,以及蛋白质与脂双层的镶嵌关系。认为膜蛋白和膜脂均可产生侧向运动,膜蛋白有的镶在膜表面,有的则嵌入或横跨脂质双分子层。膜中脂质双层构成了膜的连续主体,它既有固体分子排列的有序性,又有液体的流动性,球形蛋白分子以各种形式与脂质双分子层相结合。该模型可解释膜的多种性质,但不能说明具有流动性的细胞膜在变化过程中如何维持膜的相对完整和稳定性。
5.通过对红细胞血影分析证明,细胞膜上的蛋白质依存在的方式不同可分为周围(外周)膜蛋白和整合(内在或跨膜或镶嵌)膜蛋白两大类。迄今所了解的膜蛋白在膜上存在的方式有5种:①“单次穿膜”跨膜蛋白;②“多次穿膜”跨膜蛋白;③膜蛋白共价结合在膜脂的胞质单层内的羟链上;④通过一寡糖链与膜脂的非胞质单层中的稀有磷脂——磷脂酰肌醇共价结合;⑤膜蛋白非共价结合在其他膜蛋白上。膜蛋白按功能不同可分为催化代谢、物质转运、细胞运动、信息感受与传递、支持与保护等。膜周围(边)蛋白主要位于膜的内侧面,与细胞运动、物质转运和信息接受与传递有关,而镶嵌蛋白可作为膜受体、载体和一些特化的酶蛋白,在膜内外物质运输、信号接受与传递、细胞免疫、细胞识别等方面都具有非常重要的作用。
6.一些转运蛋白在细胞膜上所形成的通道蛋白不是持续开放,而是间断开放的,间断开放的通道受闸门控制,这类通道称闸门通道。在神经肌肉接头,沿神经传来的冲动刺激到肌肉收缩的整个反应在不到一秒钟内完成,这至少包括4种不同闸门通道的顺次开放与关闭。当神经冲动到达神经终板时,膜去激化,使膜的电压闸门Ca2+通道瞬时开放,由于胞外2+2+Ca浓度比胞内高1 000倍以上,所以Ca内流进入神经终板内,刺激终板分泌神经递质——乙酰胆碱到突触间隙内,乙酰胆碱与突触后肌膜上的相应受体结合,与其相关的阳离子通道
++
瞬时开放,Na流入细胞内引起细胞膜局部去极化,去极化使电压闸门Na离子通道短暂开放,让更多的Na+涌入细胞内,使细胞膜进一步去极化,开放更多的电压闸门Na+离子通道,结果形成一个去极化波(动作电波),扩展到整个肌细胞膜,肌细胞膜广泛去极化引起肌浆
2+2+
网上的离子通道瞬时开放,Ca流入细胞质,细胞质内Ca突然增加,引起细胞内肌原纤维收缩。
★7.当肝细胞需要利用胆固醇合成生物膜时,这些细胞就合成LDL受体,并把它们嵌入到细胞膜上,LDL受体在细胞膜中是分散的,当LDL与LDL受体结合后,细胞膜向内凹陷形成有被小窝。有被小窝形成过程中,LDL受体即集中于有被小窝内,它在形成后不断内陷,1分钟后即陷入细胞内,与细胞膜脱离形成有被小泡,这样与受体结合的LDL颗粒很快被摄入细胞。有被小泡不久就脱掉网格蛋白被膜,并与其他囊泡融合形成内体。在内体内LDL颗粒与受体分离,受体随转移囊泡返回细胞膜,完成再循环,LDL颗粒被溶酶体酶降解,游离胆固醇可用于合成新的生物膜。如胞内游离胆固醇积聚过多,细胞就停止LDL受体蛋白及胆固醇的合成,因而细胞本身合成的和摄入的胆固醇均减少,这是一个反馈调节作用。 ★8.细胞表面受体是一种位于细胞膜上,并能识别细胞外的各种信号分子(配体),并与之结合后能引起细胞内各种生物学效应的大分子(多数为跨膜糖蛋白)。配体是指能与膜受体或胞浆受体结合、相互作用并产生特定生物学效应的化学物质,可分为亲水性和亲脂性两类。以甾类激素为代表的亲脂性信号分子可穿过细胞膜进入细胞,与细胞质或细胞核中的受体结合成具有调节作用的复合物;而神经递质、生长因子和大多数的激素分子都为亲水性信号分子,它们不能穿过脂质细胞膜,但可与膜上的受体结合,经信号转换机制将调节信号传递给细胞内产生的第二信使,由第二信使负责调控细胞内特定的化学反应或生物学效应。细胞表面信号传导的受体可分为三类:①离子通道受体,自身是一种离子通道或与离子通道相偶联,配体通过调节通道的开或关来传递信息;②催化受体,是由单条肽链一次跨膜糖蛋白组成,N端细胞外有配体结合部位,C端胞质区有酪氨酸酶,具有酪氨酸蛋白激酶(TPK)活性。当与细胞外配体结合被活化时,TPK的酪氨酸自身磷酸化,同时将ATP的磷酸基团转移到靶蛋白上,使靶蛋白磷酸化,触发细胞分裂增殖;③偶联G蛋白受体,G蛋白全称为结合鸟苷酸调节蛋白或称为信号蛋白,是一种分子量为10万左右的可溶性膜蛋白,由α、β、γ 3个亚基构成。位于细胞表面受体与效应器之间,当细胞表面受体与相应配体结合时,释放信号使G蛋白激活,通过与GTP和GDP的结合,构象发生改变,并作用于效应器调节细胞内第二信使的水平,最终产生特定的细胞效应。作为一种调节蛋白或称偶联蛋白,G蛋白又可分为刺激型G蛋白和抑制型G蛋白等多种类型,其效应器可不相同。
30
★9.可分为cAMP信号途径;cGMP信号途径; Ca2+信使途径;甘油二酯和三磷酸肌醇信使途径等。如当刺激性信号(如肾上腺素)与肝细胞表面的β受体结合后,刺激性受体(Rs)被激活,构象改变,暴露与刺激性G蛋白(Gs)结合的部位;配体-受体复合物与Gs结合,Gs活化,Gs的α亚单位(Gsα)构象改变,转变结合GDP为GTP;Gsα-GTP复合物与βγ二聚体脱离,与腺苷酸环化酶(AC)结合;AC活化分解ATP产生cAMP,细胞内cAMP水平升高,cAMP充当细胞内的第二信使,磷酸化依赖cAMP的A-激酶(PKA),PKA被活化,依次磷酸化无活性的靶蛋白,引起连锁反应和生物效应,使细胞内糖原分解成葡萄糖;随后Gsα即分解结合的GTP成为GDP和Pi;Gsα与GDP结合,和AC脱离,AC失活。Gsα又重新与βγ形成三聚体,恢复静息状态。此过程可反复进行,直到信号分子和受体分离为止。 10.细胞表面是指由细胞的质膜、质膜外表的细胞外被和质膜内面的膜下溶胶层所构成的一个复合结构体系,还包括细胞外表的微绒毛、纤毛和鞭毛等待化结构。其功能很复杂,与细胞的支持保护、识别粘着、运动迁移、免疫应答、物质运输、信息传递、能量转换、分裂分化、衰老病变等多个方面有密切关系。所以说细胞表面是一个复合的结构体系和多功能体系。
31
第三篇 细胞质和细胞器
3.12 细胞质基质
3.12.1选择题
3.12.1.1 A型题 1.蛋白聚糖(PG)与一般糖蛋白比较,叙述错误的是
A.PG含糖基种类少于后者 B.PG糖链由重复二糖单位组成 C.PG糖含量一般超过后者 D.PG糖链由多种糖基组成且分支 E.PG多含有硫酸基团
2.下面关于蛋白聚糖(PG)的生物合成,哪些是不正确的
A.糖基是由高度特化的糖基转移酶逐个加上,而不是先合成二糖单位 B.核心蛋白的多肽合成在rER上,而糖基化在高尔基复合体进行
C.核心蛋白的多肽链还未完成时,即以O-连接或N-连接方式连接上糖基 D.糖链的延长和加工修饰在高尔基复合体上进行
E.由差向异构酶将萄糖醛酸转变为艾杜糖醛酸,由硫酸转移酶催化硫酸化 3.粘多糖累积病是由于
A.血液中透明质酸(HA)含量升高 B.先天性缺乏合成GAG的酶 C.硫酸皮肤素蛋白聚糖和硫酸化程度降低
D.氨基聚糖(GAG)和蛋白聚糖(PG)及其降解中间产物在体内一定部位堆积 E.GAG和PG合成酶缺陷
4.下列关于胶原的结构和类型,哪项叙述是错误的
A.胶原分子由3条分别称为α、β、γ的α-螺旋链组成
B.构成胶原的多肽链中的甘氨酸约占1/3,富含脯氨酸和赖氨酸
C.肽链中的氨基酸的三肽重度顺序为Gly-X-Y或Gly-pro-Y及Gly-X-Hyp D. 脯氨酸和赖氨酸常羟基化和糖基化
E.肽链中几乎不含色氨酸、酪氨酸和蛋氨酸 5.关于胶原的生物合成,下叙哪项叙述是错误的
A.胶原的基因约含有50个外显子,多数外显子由54或54倍数的核苷酸组成 B.hnRNA须经精确的剪接和加工才能形成α-链的mRNA
C.mRNA经粗面内质网膜旁核糖体合成的前体链称为前肽(prepeptide)
D.在高尔基复合体中,前α-链中的脯氨酸残基羟化形成羟脯氨酸,赖氨酸残基 羟化并选择糖基化
E.前α-链两端的前肽通过二硫键交联形成球形分子,防止前胶原分子在胞内装 配成胶原纤维大分子
6.胶原形成的过程,下列哪项是正确的
A.前体链→前肽(prepeptide)→前胶原分子(procollagen molecule)→胶原分子 (collagen molecule)→胶原原纤维(?collagen ?fibril)→胶原纤维 B.前体链→前α-链→前胶原分子→胶原分子→胶原原纤维→胶原纤维
C.前体链→前肽→前α-链→前胶原分子→胶原分子→胶原原纤维→胶原纤维 D.前体链→前β-链→前胶原分子→胶原分子→胶原原纤维→胶原纤维 E.前肽→前α-链→前胶原分子→胶原分子→胶原原纤维→胶原纤维 7.关于胶原的功能,下列叙述中哪项是错误的
A.哺乳动物皮下结缔组织的胶原具有多方向的抗压性 B. Ⅲ型胶原组成细纤维网络,包围于细胞表面 C.Ⅳ型胶原构成各种上皮细胞基膜的网架结构
D.胶原通过细胞表面受体介导与细胞内骨架相互作用,影响细胞的形态和运动 E.刺激上皮细胞分化,维持上皮细胞生长,引导细胞迁移
8. 关于纤粘连蛋白(fibronectin,FN),下列叙述中哪项是不正确的 A. 主要有pFN、cFN(oFN)和mFN三种类型
B. 典型的FN由两个相似的亚单位聚合构成V型分子型的二聚体
32