例6 任何n元对称多项式的置换群都是n次对称群.
很显然,一个多元多项式的置换群的阶数越高,这个多元多项式的对称性越强.反之亦然.因此,我们通常所熟知的多元对称多项式是对称性最强的多项式. 三、习题2.1解答 1.略 2.
3.
4.
5.
6.
§2. 2 群中元素的阶
一、主要内容
1.群中元素的阶的定义及例子.周期群、无扭群与混合群的定义及例子.特别,有限群必为周期群,但反之不成立.
2.在群中若a=n,则
4.若G是交换群,又G中元素有最大阶m,则G中每个元素的阶都是m的因子. 二、释疑解难
在群中,由元素a与b的阶一般决定不了乘积ab的阶,这由教材中所举的各种例子已经说明了这一点.对此应十分注意.但是,在一定条件下可以由阶a与b决定阶ab,这就是教材中朗定理4:
4.一个群中是否有最大阶元?
有限群中元素的阶均有限,当然有最大阶元.无限群中若元素的阶有无限的(如正有理数乘群或整数加群),则当然无最大阶元,若无限群中所有元素的阶均有限(即无限周期群),则可能无最大阶元,如教材中的例4:
下面再举两个(一个可换,另一个不可换)无限群有最大阶元的例子.
5.利用元素的阶对群进行分类,是研究群的重要方法之一.例如,利用元素的阶我们可以把群分成三类,即周期群、无扭群与混合群.而在周期群中又可分出p—群p是素数),从而有2—群、3—群、5—群等等.再由教材§3. 9知,每个有限交换群(一种特殊的周期群)都可惟一地分解为素幂阶循环p—群的直积,从而也可见研究p—群的重要意义. 三、习题2.2解答 1.
2.
3.
4.
5.
推回去即得. 6.