A Re–Os study of molybdenites from the Lanjiagou Mo-Chunming Han - 图文 下载本文

GondwanaResearch16(2009)264–271

ContentslistsavailableatScienceDirect

GondwanaResearch

journalhomepage:www.elsevier.com/locate/gr

ARe–OsstudyofmolybdenitesfromtheLanjiagouModepositofNorthChinaCratonanditsgeologicalsigni?cance

ChunmingHana,?,WenjiaoXiaoa,GuochunZhaob,MinSunb,WenjunQuc,AndaoDucabcStateKeylaboratoryofLithosphericEvolution,InstituteofGeologyandGeophysics,ChineseAcademyofSciences,Beijing,100029,ChinaDepartmentofEarthSciences,TheUniversityofHongKong,PokfulamRoad,HongKong,ChinaNationalResearchCenterofGeoanalysis,Beijing,100037,China

articleinfoabstract

TheLanjiagouModepositislocatedintheeasternpartoftheNorthChinaCraton.RheniumandosmiumisotopesinmolybdenitesfromtheLanjiagouporphyryModeposithavebeenusedtodeterminethetimingofmineralization.Molybdenitewasanalyzedmainlyfromgraniteporphyry,whichischaracterizedbymoderatetostrongsilici?cation.Rheniumconcentrationsinmolybdenitesamplesarebetween33and48μg/g.Analysisofelevenmolybdenitesamplesyieldsanisochronageof181.6±6.5Ma(2σ).Basedonthegeologicalhistoryandspatio-temporaldistributionofthegranitoids,itisproposedthattheModepositsintheeasternpartoftheNorthChinaCratonwererelatedtothesubductionofthePaleo-Paci?cplateduringJurassictime.

?2009PublishedbyElsevierB.V.onbehalfofInternationalAssociationforGondwanaResearch.

Articlehistory:

Received15October2008

Receivedinrevisedform15December2008Accepted4January2009

Availableonline7January2009Keywords:Re–OsstudyModepositLanjiagou

NorthChinaCraton

1.Introduction

TheNorthChinaCratonbearsthemostimportantmolybdenummetallogenicprovinceinChina,whichconsistsoftheYanshan–LiaoningmolybdenumorebeltonthenorthernmarginandtheEasternQinlingmolybdenumorebeltonthesouthernmargin(Huangetal.,1996).LocatedonthenorthernmarginoftheNorthChinaCraton(NCC),theYanshan–Liaoningmolybdenumorebeltisoneofthecentralizedareasofimportantmolybdenumdeposits,aswellasoneofthemajormolybdenumproducersinChina.Thetimeandspaceofthesedepositsareassociatedwithintermediate-acidgranites.Themolybdenum(copper)depositsareusuallydistributedalongtheendo-orexo-contactzonesofgraniteporphyries,andbelongtoporphyry-type(e.g.Lanjiagou),porphyry–skarn-type(e.g.Xiao-jiayingzi,DawanandXiaochigou)andskarn-type(e.g.YangjiazhangziandShouwangfen)oredeposits(Table1;Fig.2).

TheLanjiagouModepositislocatedintheeasternpartoftheNCC(Figs.1and2).Regionallyandtectonically,itoccursintheeasternpartoftheMesozoicYanshanfoldbelt.ItwasdiscoveredbytheLiaoningBureauofGeologyandGeneralCorporationofNon-ferrousMetallur-gicMetalsinthe1950s.Presently,theminingexplorationisstillbeingperformedbythelocalgovernment.Thereserveofmolybdenummetalinthedeposithasbeenestimatedtobemorethan216,800tonsMo(Huangetal.,1989).

SincethediscoveryoftheLanjiagouModeposit,manyscienti?cstudieshavebeenconducted,especiallyonthegeologyand

?Correspondingauthor.

E-mailaddress:cm-han@mail.igcas.ac.cn(C.Han).

geochemistryoftheMoores(AiandFeng,1985;YeandWang,1985;Luoetal.,1991;Yu,1992;Daietal.,2007;Tian,1999),includingstudiesonradiogenicisotopicdatingandstableisotopes(Huangetal.,1996;AiandFeng,1985),andtheore-formingenvironments(Huangetal.,1996;Peietal.,1998;Maoetal.,2003;Daietal.,2006;Geetal.,2007).However,muchofthedocumentationoftheLanjiagoudeposithasbeenreportedintheChineseliterature,andtheinternationalgeologicalcommunityknowslittleaboutthisdeposit.

Inthepresentstudy,wecarriedoutRe–OsdatinginvestigationsonmolybdenumoresfromtheLanjiagoudepositsinordertofurtherconstrainthetimingofmineralization.Inaddition,wealsodiscussthegeodynamicenvironmentsandprocessesthatcontrolledtheoreformation.AnunderstandingofthesemineralizingprocessesandgeodynamicenvironmentshasimportantimplicationsfortheMoexplorationprogramsintheeasternpartoftheNCC.2.Geologicalsetting

TheNCCistriangularinshapewithanareaofapproximately1,500,000km2,andisboundedbyfaultsandyoungerorogenicbelts(Fig.1;Zhaoetal.,2001).TheEarlyPaleozoicQilianshanOrogenandtheLatePaleozoic–LateMesozoicTianshan–InnerMongolia–Daxin-ganlingOrogenboundtheNCCtothewestandthenorth,respectively(Fig.1;Ren,1980;Zorinetal.,2001;Zhaoetal.,2001),andtheQinling–Dabie–Suluultrahigh-pressuremetamorphicbeltseparatestheNCCfromtheYangtzeCratontothesouthandeast(Fig.1).Recently,manynewresultsfrominvestigationsofmagmatism,metamorphism,structureandtectonics,geochronology,andmajor,trace,andisotopegeochemistryonrocksrelatedtotheNCChavebeen

1342-937X/$–seefrontmatter?2009PublishedbyElsevierB.V.onbehalfofInternationalAssociationforGondwanaResearch.doi:10.1016/j.gr.2009.01.001

C.Hanetal./GondwanaResearch16(2009)264–271

Table1

SummaryofgeologicalandmineralogicalfeaturesofmolybdenumandcopperdepositsintheYanshan–Liaoningmetallogenicbelt.Deposits

Genetictypes

EconomicHostrocksmetalsMo

Middle-UpperCambrian-Ordovi:limestone,

shaleandskarn

Intrusiverocks

Wall–rockalteration

Reserve,grade26.2×104MoMo:0.14%

OrebodysizeLength:300–800mThickness:3–10mDepth:200–250m

Sul?de

assemblages

265

ReferencesHuangetal.,1989

YangjiazhangziSkarn

Porphyriticgranite,Silici?cation,granite–porphyrypyritization,

chloritization,carbonization

k-feldsparalteration,greisenization,silici?cation,pyritization,chloritization,carbonizationSkarnization,

k-feldsparalteration,pyritization,carbonization,sericitization,chloritization

K-feldsparalteration,silici?cation,pyritization,sericitization,chloritization

K-feldsparalteration,silici?cation,skarnization,Serpentinization,carbonizationK-feldsparalteration,pyritization,skarnization,Serpentinization,sericitizationSkarnization,chloritization,Sericitization,silici?cation,serpentinization

LanjiagouPorphyryMo

Xiaojiayingzi

Porphyry–Mo–Feskarn

PorphyriticgraniteSinian:Dolomitic

limestone,

chert–dolomiticlimestone;

Cretaceous:pyroclasticrock

PorphyriticdioriteSinian:Dolomitic

limestone,

chert–dolomiticlimestone

21.68×104MoMo:0.13%

10.5×104MoMo:0.28%;296.3×104FeFe:33.4%

DazhuangkePorphyryMoSinian:CarbonaterockKjelsasite

1.04×104MoMo:0.08%;

Dawan

Porphyry–Mo–Cu–skarnZn–AgSinian:Dolomitic

limestone

Rhyoliteporphyry

25.9×104MoMo:0.12%

Xiaosigou

Porphyry–Mo–Cuskarn

Sinian:Dolomiticlimestone,

chert–dolomiticlimestone

Granodiorite–porphyry

5.98×104MoMo:0.09%;1.85×104CuCu:0.74%

ShouwangfenSkarn

Cu–Mo–FeSinian:Dolomite,chert–dolomiteicPorphyritic–granodiorite

0.22×104MoMo:0.31%;1.62×104CuCu:0.72%

Molybdenite,pyrite,

Chalcopyrite,galena,

zincblende

Length:360–1280mMolybdenite,Thickness:13–31mpyrite,Depth:200–550mchalcopyrite,

galena,magnetite,argentite

Length:150–800mMolybdenite,Thickness:7–21mpyrite,Depth:150–600mmagnetite,

chalcopyrite,galena,

zincblende

Length:350–1000mMolybdenite,Thickness:20–95mpyrite,Depth:350–500mzincblende,

ilmenite,chalcopyrite,

Length:n×1000mMolybdenite,Thickness:n×10mpyrite,Depth:n×100mpyrrhotite,

zincblende,galena,

chalcopyrite

Length:2000mChalcopyrite,Thickness:30–100mChalcocite,Depth:300–500mpyrite,

molybdenite,bornite,tetrahedrite

Length:200–500mChalcopyrite,Depth:150–300mbornite,

molybdenite,magnetite,zincblende,galena

Huangetal.,1989

Daietal.,2006

Daietal.,2006

Daietal.,2006

Daietal.,2006

Daietal.,2006

obtained(Houetal.,2008a,b;Kuskyetal.,2007;Pengetal.,2007;Santoshetal.,2007a,b;Zhaietal.,2007;Suetal.,2008).

ThebasementoftheNCChasbeendividedintotheEasternandWesternBlocksseparatedbythePaleoproterozoicTrans-NorthChinaOrogen(Fig.1;Zhaoetal.,2001).TheEasternBlockconsistsoftheArcheanbasementandthePaleoproterozoicJiao-Liao-JiBelt(Fig.1;Zhaoetal.,2005),andtheWesternBlockcanbesubdividedintotheOrdosandYinshanBlocksseparatedbythePaleoproterozoicKhonda-liteBelt(Fig.1;Zhaoetal.,2005).ThereisabroadconsensusthatboththeKhondaliteBeltintheWesternBlockandtheTrans-NorthChinaOrogeninthecentralpartofthecratonrepresenttwoPaleoproter-ozoiccontinent–continentcollisionalbelts(Zhaoetal.,2001,Wildeetal.,2002;Kr?neretal.,2005,2006).ThePaleoproterozoicKhondaliteBeltisconsideredtohaveformedbytheamalgamationoftheYinshanBlockinthenorthandtheOrdosBlockinthesouthtoformtheWesternBlockat1.95–1.92Ga(Zhaoetal.,2005;Wanetal.,2006;Santoshetal.,2007a,b),andsubsequentlytheWesternBlockcollidedwiththeEasternBlockalongtheTrans-NorthChinaOrogentoformthecoherentbasementoftheNCCat~1.85Ga(Zhaoetal.,2000,2001,2005;Guoetal.,2005;Liuetal.,2006).

TheEarlyArcheanbasementrocksareonlyreportedfromtheEasternBlock,representedby3.5–3.85Gadetritalzirconsandfuchsite-bearingquartzitesand~3.5GaamphibolitesintheCaoz-huangareaoftheEasternHebei,andthe3.3–3.8GagranitoidsandmetasedimentaryrocksinAnshanarea(Liuetal.,1992;Songetal.,1996).MiddleArcheanbasementrocksalsomainlycropoutintheEasternBlock,ranginginagefrom3.5to3.0Ga(Huangetal.,1986;Jahnetal.,1987;Kr?neretal.,1988;Wuetal.,1991;ShenandQian,1995),andoccurringasenclaves,boudinsandsheetswithinthe2.6–2.5Gatrondhjemite–tonalite–granodiorite(TTG)and2.5Gasyn-tectonicgraniteswhichmakeupmuchoftheNCC(Wuetal.,1991;Kr?neretal.,1988;Zhaoetal.,2001).ThelateArcheanbasementrocksarewidespreadinboththeEasternBlockandtheYinshanBlockandconsistpredominantlyof2.8–2.5Gatonalitic–trondhjemitic–grano-dioritic(TTG)gneisses,ultrama?ctoma?cigneousintrusions,dykesandminoramountsofsupracrustalrocks.Oftheserocks,TTGgneissesmakeup70%ofthetotalexposureoftheNeoarcheanbasement(Wuetal.,1991;Zhaoetal.,1998),andthesupracrustalrockscomprisesedimentaryandbimodalvolcanicrocks(Zhaoetal.,1998).Alltheserocksweredeformedandmetamorphosedtobetweengreenschistandgranulitefaciesat2.48–2.50Ga(Jahnetal.,1987;Wuetal.,1991;Zhaoetal.,1998;Geetal.,2003).

Sincethe?nalcratonizationat~1.85Ga(Zhaoetal.,2001;Kuskyetal.,2007),theNCCwassubsequentlycoveredbythicksequencesofMeso-NeoproterozoicandPaleozoicsediments(Luetal.,2008),withintrusionsofdiamondiferouskimberlitesinShandongandLiaoningProvincesduringmiddleOrdoviciantime.TheeasternpartoftheNCCbecametectonicallyactiveagainduringLateMesozoictime,withlarge-scalemagmatism,basindevelopment,ductiledeformationandmovementonlarge-scalefaultswhichtookplacefromtheLateJurassictoEarlyCretaceous(Yangetal.,2003).IntheCenozoic,alkalibasalts(manycontainingxenoliths)andminortholeiiticbasalts

266C.Hanetal./GondwanaResearch16(2009)264–271

Fig.1.TectonicsubdivisionoftheNorthChinaCraton(afterZhaoetal.,2005).Fig.2isoutlined.

Fig.2.SchematicgeologicalmapoftheYanshan–LiaoningmolybdenummetallogenicbeltonthenorthernmarginoftheNorthChinaplatform(modi?edfromHuangetal.,1996).

C.Hanetal./GondwanaResearch16(2009)264–271267

Fig.3.GeologicalmapoftheLanjiagouModeposit(modi?edfromDaietal.,2007).

eruptedatseverallocationsintheNCC(Basuetal.,1991;Tatsumotoetal.,1992).

TheoccurrenceofdiamondiferouskimberlitesinShandongandLiaoningProvincessuggeststhepresenceofathickandcoldlithosphericroot(ca.200km)oftheNCCatleastaslateasMiddleOrdoviciantime(Zhouetal.,1991,1994;Menziesetal.,1993;Grif?netal.,1998).However,constraintsfromxenolithsintheCenozoicbasaltsindicatethattheNCCisnowunderlainbyahotlithospherevaryingbetween120and50kmthick(Maetal.,1984),whichisconsistentwiththeavailableseismicandsurfaceheat?owdata.Therefore,itisevidentthattherewasstronglithosphericthinningduringPhanerozoictime,mostlyintheMesozoicandCenozoic(Menziesetal.,1993;MenziesandXu,1998;Grif?netal.,1998),whichiscon?rmedbytherecentOsisotopestudiesofGaoetal.(2002)andWuetal.(2003).3.LanjiagouMo(copper)deposit

TheLanjiagouintrusioniscomposedofcoarse-grainedgraniteand?ne-grainedgranite,thelargestofwhichoccupiesasurfaceoutcropof~20km2(Fig.3).Viewedfromthesurfaceoutcrop,theintrusionismostlyirregularinshape,butviewedfromtheverticalsection,theintrusionoccursasveinsoflargerbodies.Thecoarse-grainedgranitegenerallycontains40–45%orthoclase,15–20%plagioclase,30–33%quartz,and3–5%biotite,withminoramountsofcalcite,muscoviteandsericite.The?ne-grainedgranitegenerallycontains40–45%orthoclase,15–20%plagioclase,28–35%quartz,and1–3%biotite,withminoramountsofcalcite,muscoviteandepidote.Orthoclasecrystalsrangefrom0.36to3.5mminsize.Geochronologyofcoarse-grainedgraniterangesbetween178and186MaK–Armethod,andthe?ne-grainedgraniteyieldsaRb–Srwhole-rockisochronageof154±14Ma.

TheLanjiagoudepositcanbefurthersubdividedintotheupperLanjiagou,MiddleLanjiagou,LowerLanjiagou,Xiaomagou,Yuan-baoshanandXishandistricts.Totally101mineralizedbodieshavebeenidenti?ed,andtheyaredistributedinthemiddlesegmentofthe?ne-grainedgraniteandthecontactzonebetweenthecoarse-grainedand?ne-grainedgranites.Individualorebodiesvaryfrom76mto1288minlengthand3.1mto31.8minthickness.Inthedippingdirection,theexploredorebodiesextendover400mbelowthesurface.ThemainorebodiestrendinNWandNSwithadipangleabout45°.Thesizeofmolybdeniterangesfrom0.01mmto0.15mm.Theoresarecharacterizedbyeuhedralandsubhedratextures,veinlet-disseminatedandbrecciatedstructures.Principalmetallicmineralsaremolybdeniteandpyriteaswellasminorquantitiesofzincblende,chalcopyrite,galena,magnetiteandelectrum.Theganguemineralsincludemainlyorthoclase,plagioclaseandquartz,withlesseramountsofcalcite,muscoviteandchlorite.Wallrocksalterationismarkedbysilici?cation,sericitization,carbonatization,chloritization,potassicalterationandgreisenization(Luoetal.,1991).

Accordingtomineralassemblagesandcrosscuttingrelationshipsoftheoreveins,?vemineralizationstagescanbeidenti?ed(Fig.4).The?rstmineralizationstage(I)ischaracterizedbygas–liquidmetasoma-tism,accompaniedbypotassiumfeldspar,quartzandmuscovite.Thesecondstage(II)ischaracterizedmainlybyphyllicalteration,formingthequartz+sericite+magnetite+pyriteassemblagethatoccursasveins.Thethirdstage(III,mainmineralizationstage)isrepresentedbytheformationofveinscontainingquartz+molybdenite+pyrite+sphalerite.Thefourthstage(IV)ismarkedbytheformationofthe