(word完整版)人教版初三数学二次函数知识点总结与经典习题含答案,推荐文档 下载本文

-

二、填空题

9.二次函数y?x?bx?3的对称轴是x?2,则b?_______。

10.已知抛物线y=-2(x+3)2+5,如果y随x的增大而减小,那么x的取值范围是_______.

11.一个函数具有下列性质:①图象过点(-1,2),②当x<0时,函数值y随自变量x的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。

12.抛物线y?2(x?2)?6的顶点为C,已知直线y??kx?3过点C,则这条直线与两坐标轴所围成的三角形面积为 。

13. 二次函数y?2x?4x?1的图象是由y?2x?bx?c的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。

14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是 (π取3.14).

2222三、解答题:

15.已知二次函数图象的对称轴是x?3?0,图象经过(1,-6),且与y轴的交点为(0,?(1)求这个二次函数的解析式;

(2)当x为何值时,这个函数的函数值为0?

(3)当x在什么范围内变化时,这个函数的函数值y随x的增大而增大?

16.某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式h?v0t?2

5). 2第15题图

12gt (0

(1)这种爆竹在地面上点燃后,经过多少时间离地15米?

(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.

--

-

17.如图,抛物线y?x?bx?c经过直线y?x?3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线顶点为D. (1)求此抛物线的解析式;

(2)点P为抛物线上的一个动点,求使S?APC:S?ACD?5 :4的点P的坐标。

18. 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元). (1)当每吨售价是240元时,计算此时的月销售量; (2)求出y与x的函数关系式(不要求写出x的取值范围); (3)该建材店要获得最大月利润,售价应定为每吨多少元?

(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.

2

--

-

二次函数应用题训练

1、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(分)之间满足函数关系:y = -0.1x2 +2.6x + 43 (0≤x≤30). (1)当x在什么范围内时,学生的接受能力逐步增强?当x在什么范围内时,

学生的接受能力逐步减弱?

(2)第10分钟时,学生的接受能力是多少?

(3)第几分钟时,学生的接受能力最强?

2、如图,已知△ABC是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC上截出一矩形零件DEFG,使EF在BC上,点D、G分别在边AB、AC上. 问矩形DEFG的最大面积是多少?

ADGBEFC

3、如图,△ABC中,∠B=90°,AB=6cm,BC=12cm.点P从点A开始,沿AB边向点B 以每秒1cm的速度移动;点Q从点B开始,沿着BC边向点C以每秒2cm的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ的面积最大?最大面积是多少?

--

-

CQAPB

4、如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.

(1)建立如图所示的直角坐标系,求抛物线的表达式;

(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.

y(0,3.5)m3.05 Om4 x

5、如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中

间有一道篱笆隔墙的养鸡场,设它的长度为x m. (1)要使鸡场面积最大,鸡场的长度应为多少m?

(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?

x

6、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=140-2x.

--