华北电力大学本科毕业设计(论文)
波技术在验证的特征撮上用得较多。小波变换采用以高斯函数的二阶导数作为小波基的小波变换技术来进行拐点提取,然后以该方法为基础,进行不同图像之间拐点序列的匹配;最后再利用提敢的拐点来对图像进行分段和段一段对应处理。由于使用离散小波变换来分解图像的参数特征,特征提取用到自适应算法,匹配则选择动态规划方法,初步试验取得较好的效果。 ? 基于特征脸的方法
特征脸方法是从主成成分分析(PCA)导出的一种人脸识别和描述技术。它将包含人脸的图像区域看作一随机向量,采用K-L变换得到正交K-L基,对应其中较大特征值的基具有与人脸相似的形状,因此又被称为特征脸。利用这些基的线性组合可以描述、表达和逼近人脸图像,所以可进行人脸识别与合成。识别过程就是将人脸图像映射到由特征脸组成的子空间上,并比较其在特征脸空间中的位置,然后利用对图像的这种投影间的某种度量来确定图像间的相似度,最常见的就是选择各种距离函数来进行度量分类实现人脸识别。 ? 神经网络法
基于神经网络的人脸识别方法就是利用神经网络的学习能力和分类能力对人脸进行特征提取与识别。目前常用的人工神经网络方法是BP(Back-Propagation)神经网络、自组织神经网络、径向基函数神经网络。径向基函数神经网络与BP网络一样都是多层前向网络,它以径向基函数作为基准,以高斯函数作为隐含层的激励函数。这种网络的学习速率快、函数逼近、模式识别等能力均优于BP神经网络,并广泛应用于模式识别、图像处理等方面。但是这种网络比BP网络所用的神经元数目要多得多,使它的应用受到了一定的限制。
? 隐马尔可夫模型方法(HMM)
HMM作为信号的一种统计模型,目前广泛应用于模式识别、图像处理的各个领域。HMM是一个由两种机理构成的随机过程:一个机理是内在的有限状态Markov链,体现为用具有限状态数的Markov链来模拟签名信号统计特征变化的隐含的随机过程,另一个是一系列随机函数所组成的集合,体现为与Markov链的每一个状态相关联的观测序列的随机过程。设有观察序列Q=Q1Q2?Qn和状态集=S{s1,s2,?sn},一个有n个状态的隐马尔可夫模型λ可以表示(π,A,B),其中π为初始状态概率矢量;A={aij}为状态转移概率矩阵,其中aij=P{qt+1=Sj|qt=St},1<=i,j<=N;B={bj}Qt)}为观察符号概率分布,若B有M个观察值{v1,v2?mv},则bj(Qt)=P{qt=vk|qt=sj,1<=j<=N,l<=k<=M}。
HMM的使用涉及到训练和分类两个阶段,训练阶段包括指定一个HMM的隐藏状态数,并且优化相应的状态转换和输出概率以便于产生的输出符号与在特定的运动类别之内所观察到的图像相匹配。匹配阶段涉及到一个特定的HMM可能产生相应于所观察图像特征的测试符号序列的概率计算。利用H顾进行验证同样由两个阶段组成,即利用训练样
9
华北电力大学本科毕业设计(论文)
本估计MHM模型参数和利用HMM评价测试。这两个过程目前都有成熟的算法,HMM参数的估计可用Baum-welch参数估计算法或Segmental K-means算法;对测试样本的评价,可以用Forward-Backward迭代算法估计签名满足模型的概率,或用viterbi最优状态搜索算法计算过程经过的最优状态。因此,利用HMM模型的关键在于HMM类型的选择和一些参数的选择以及阀值的估计[4]。
2.2分类器
在人脸识别过程中,通过提取特征模块,得到表示人脸图像的特征向量,此时需要利用分类器根据提取的特征向量进行分类处理,以确定当前人脸的身份。在这个过程中,分类器起着决策机制的作用,对最终的判别非常关键,分类器性能的优劣也将直接关系到人脸识别结果的好坏。常用的分类器有以下几种: ? 最小距离分类器(NC)
最小距离分类器相似度量是以检测样本到类中心的距离大小为判据。 ? 最近邻分类器(NN)
最近邻法是将所有训练样本都作为代表点,因此在分类时需要计算待识别样本x到所有训练样本的距离,与x最近的训练样本所属于的类别即为待识别样本x所属类别。假定有C个类别ω1、ω、ωn的模式识别问题,每类有标明类别的样本Ni个,i=1,2,?,C,我们可以规定以类的判别函数为:
,k=1,2,?,Ni .
? 三阶近邻法
三阶近邻法是计算像素的差值的绝对值。距离公式可表示为:
L(x,y)=lxi-yil (2.2.3)
由式(2.2.3)计算所得出的具有最小值的图像并不一定属于同—类别。三阶近邻法计算出与测试图像距离最小的三幅图像,计算这三幅图像所属的类分别计为classl,class2,class3,若classl和class2且class2和class3不属于同一类,则测试图像属于classl;若classl和class2相同,则测试图像属于classl,而class2与测试图像也是相似的;若class2和class3属于同一类,则测试图像属于class2,而class3与测试图像也是相似的,但classl虽然与测试图像距离最近却不属于同一类,可能是
10
华北电力大学本科毕业设计(论文)
由测试图像的姿态和饰物引起的。 ? 贝叶斯分类器
如果知道各类的先验分布和条件分布,就可以采用最大后验估计(MAP)的方法进行分类。在人脸识别中,有时假定人脸服从高斯分布,能够得到不错的结果。 ? 支撑向量机(SVM)
在小样本情况下,降低了训练集的错分风险,又降低了未知人脸(如检测集)的错分风险。在人脸识别中已逐渐得到应用。 ? 神经网络分类器(NNC)
采用神经网络作为分类器是很自然的。一般一个3层网络对应模式识别中图像输入、特征提取、分类3部分。通常的NNC有多层感知机(MLP)模型、BP网络、径向基函数网络等。SVM也借鉴了神经网络的思想。
11
华北电力大学本科毕业设计(论文)
第三章 人脸识别系统的设计及实现
3.1人脸识别流程
完成人脸识别的工作需要一系列的步骤,它们结合起来构成一个完整的流程。由于研究人员来自不同的学科、具有不同的背脊,而且不同的人脸识别应用中对识别的目标也不同,所以人脸识别的流程并不统一一个比较通用的人脸识别流程如下图所示:
其主要步骤包括:人脸检测/跟踪(face detection/tracking),特征提取(face extraction),特征降维(face dimensionality reduction),匹配识别(matching and classification).它们之间基本上是串行的关系。
(1) 人脸检测/跟踪。人脸检测是完成人脸识别工作的自动系统的第一个步骤。该步骤的目的是在输入的图像中寻找人脸区域。具体来说:给定意一幅任图像,人脸检测的目的是确定是否图像州有人脸存在,如果存在,给出每个人脸的具体位置和范围。实际应用中人脸图像的采集或获取常在非受控的条件下进行,这样所得到的图像中的人脸在尺寸、朝向、明暗、遮挡、分辨率等方面都有很多不同,使同一的人脸出现各种变形,并有可能导致各种误识、漏识等失败的情况。为校正人脸在尺度、光照和旋转等方面的变化,常需采用一些包括几何归一化(空间尺度归一化)和光照归一化(灰度幅值归一化)等手段来调整不同的人脸图像,以利于用统一算法进行识别。
(2) 特征提取。 为区分不同的人脸,需提取各种人脸的独特性质。也就是要从人脸图像中映射提取一组反映人脸特征的数值表示样本。这里首先需要采取某种表示方式来表示检测出的人脸和数据库中的已知人脸。通常的表示法包括几何特征(如欧氏距离、曲率、角度)、代数特征(如矩阵或特征向量)、固定特征模板、特征脸等。
(3) 特征降维。 人脸是一个非刚性的自然物体(柔性体),从人脸图像中可提取很多不同特征,所以表征人脸的原始特征对应高维空间中的数据(对一幅M*N的图像,空间维数可达M*N)。直接利用这样高维的数据进行识别除需要很多的匹配计算量外,由于很难对各高维数据的描述能力做有效的判断,故还不能保证基于这么多数据进行的识别结果的正确性。在特征提取后,需采用紧凑的人脸表征方式,将原始特征进行筛选组合,集中信息,降低维数,使这些低维空间的有效性的到提高,以有利于接下来的匹配分类。
(4) 匹配识别。 在特征提取的基础上,选择使当的匹配策略,可将待识别的人脸与数据库中的已知人脸进行匹配比较,建立它们的相关关系,并输出所作出的判断决策/决定(识别结果)。与人脸检测不同,这里利用的主要是人脸个体差异的信息。有两种识别目的和情况需要区别:一种是对人脸图像的验证(verification),即要确认输
12