£¨9£©(Q£¨8£©
R) (( PQ) R) ¹æÔò3£¬¸ù¾Ý£¨2£©¡¢
2.2.2 ¹«Ê½Ô̺µÄÖ¤Ã÷·½·¨
Ö÷ÒªÓÐÈçÏ·½·¨£º¸ø³öÁ½¸ö¹«Ê½A£¬B£¬Ö¤Ã÷AÔ̺B£¬ÎÒÃÇÓÐÈçϼ¸ÖÖ·½·¨£º
·½·¨Ò». ÕæÖµ±í·¨¡£½«¹«Ê½AºÍ¹«Ê½BͬÁÐÔÚÒ»ÕæÖµ±íÖУ¬É¨Ã蹫ʽAËù¶ÔÓ¦µÄÁУ¬ÑéÖ¤¸ÃÁÐÕæÖµÎª1µÄÿһÏËüËùÔÚÐÐÉÏÏàÓ¦¹«Ê½BËù¶ÔÓ¦ÁÐÉϵÄÿһÏî±ØÎª1£¨Õ棩£¬Ôò¹«Ê½AÔ̺B¡£
Àý2.2.4 ÉèA= (PA
B¡£ Ö¤Ã÷£º
P Q R PQPR Q 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 A B Q
R)
(PQ)£¬B=(P
R)£¬Ö¤Ã÷£º
1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 ±í2.2.2
Óɱí2.2.2¿ÉÒÔ¿´³ö£¬Ê¹AÎªÕæµÄ½âÊ;ùʹBÒàÎªÕæ£¬Òò´Ë£¬A
·½·¨¶þ. Ö¤Ã÷A
BÊǺãÕæ¹«Ê½¡£ Q
R)
(P
Q)
(PQ
R)ºãÕæ£¬Òò´Ë£¬R)
(P
Q)
B¡£
ÓÉÀý2.2.1Öª£¬(P
Á¢¼´¿ÉµÃµ½Àý2.2.4ÖеĽáÂÛ£º(P(P
R)£¬¼´A
B¡£
Àý2.2.5 ÉèA¡¢BºÍCΪÃüÌ⹫ʽ£¬ÇÒAÊö£¨¿Ï¶¨»ò·ñ¶¨£©ÏÂÁйØÏµÊ½µÄÕýÈ·ÐÔ¡£ £¨1£©(A£¨2£©(A½â£ºÓÉAΪ0¡£
ÕæÖµ±íÈçÏ£º A B C AB (AC) C)
(B( B
C)£» C)¡£
B¡£Çë·Ö±ð²û
BÖª£¬ABÊǺãÕæ¹«Ê½£¬¹ÊA=1ʱ£¬B²»¿ÉÄÜ
C) (A C) (B0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 ±í2.2.3
´ÓÕæÖµ±í¿ÉÒÔ¿´³ö£¬(A(A
C) ( B
C) (A
C) (B
C) ( B1 1 1 1 1 1 1 1 0 1 1 1 C) C)ÊǺãÕæ¹«Ê½£¬ËùÒÔ£¬
C) ( B
C)
C) (BC)ÕýÈ·£»(A
²»ÊǺãÕæ¹«Ê½£¬ËùÒÔ£¬(A
Àý2.2.6 ÉèA=(RÖ¤Ã÷£ºÎÒÃÇÀ´Ö¤Ã÷A ((R(
P
Q)
C) ( BC)²»ÕýÈ·¡£
P) Q£¬B= PBºãÕæ¡£
Q£¬Ö¤Ã÷AÔ̺B¡£
P) Q) ( P Q)= ( ( RP) Q)
=(((
P
Q)
RP) Q)
=(R( P
Q)
Q) ( P Q)
=1
·½·¨Èý. ÀûÓÃһЩ»ù±¾µÈ¼Ûʽ¼°Ô̺ʽ½øÐÐÍÆµ¼¡£ ¶ÔÓÚÀý2.2.6£¬ÓÉ»ù±¾µÈ¼Ûʽ¿ÉµÃ£º
A=(R=
P) (
R Q P)
Q P
Q) Q)
Q) ( P
Q)
Q
= (R=( R=( R
Óɽ̲ÄÖлù±¾Ô̺ʽ2. P(P
Q)£¬¼´AÔ̺B¡£
P) Q) Q) Q
(( P
Q¿ÉÖª£¬( R
·½·¨ËÄ. ÈÎÈ¡½âÊÍI£¬ÈôIÂú×ãA£¬ÍùÖ¤IÂú×ãB¡£
Àý2.2.7 ÉèA= PÖ¤Ã÷AÔ̺B¡£
Ö¤Ã÷£ºÈÎÈ¡½âÊÍI£¬ÈôIÂú×ãA£¬ÔòÓÐÈçÏÂÁ½ÖÖÇé¿ö£º £¨1£©ÔÚ½âÊÍIÏ£¬PΪ¼Ù£¬Õâʱ£¬BµÈ¼ÛÓÚ(RQ) £¨R
Q£©£¬Òò´Ë£¬IÒàÂú×ãB¡£
R
Q
Q£¬B=(R
Q)
£¨£¨P
R£©
Q£©£¬
£¨2£©ÔÚ½âÊÍIÏ£¬PÎªÕæ£¬QÎªÕæ£¬ËùÒÔ£¬PÎªÕæ£¬¹ÊBÎªÕæ£¬¼´£¬IÂú×ãB¡£ ×ÛÉÏ£¬IÂú×ãB£¬Òò´Ë£¬AÔ̺B¡£