¼ªÁÖ´óѧÀëÉ¢Êýѧ¿ÎºóϰÌâ´ð°¸ ÏÂÔØ±¾ÎÄ

£¨9£©(Q£¨8£©

R) (( PQ) R) ¹æÔò3£¬¸ù¾Ý£¨2£©¡¢

2.2.2 ¹«Ê½Ô̺­µÄÖ¤Ã÷·½·¨

Ö÷ÒªÓÐÈçÏ·½·¨£º¸ø³öÁ½¸ö¹«Ê½A£¬B£¬Ö¤Ã÷AÔ̺­B£¬ÎÒÃÇÓÐÈçϼ¸ÖÖ·½·¨£º

·½·¨Ò». ÕæÖµ±í·¨¡£½«¹«Ê½AºÍ¹«Ê½BͬÁÐÔÚÒ»ÕæÖµ±íÖУ¬É¨Ã蹫ʽAËù¶ÔÓ¦µÄÁУ¬ÑéÖ¤¸ÃÁÐÕæÖµÎª1µÄÿһÏËüËùÔÚÐÐÉÏÏàÓ¦¹«Ê½BËù¶ÔÓ¦ÁÐÉϵÄÿһÏî±ØÎª1£¨Õ棩£¬Ôò¹«Ê½AÔ̺­B¡£

Àý2.2.4 ÉèA= (PA

B¡£ Ö¤Ã÷£º

P Q R PQPR Q 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 A B Q

R)

(PQ)£¬B=(P

R)£¬Ö¤Ã÷£º

1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 ±í2.2.2

Óɱí2.2.2¿ÉÒÔ¿´³ö£¬Ê¹AÎªÕæµÄ½âÊ;ùʹBÒàÎªÕæ£¬Òò´Ë£¬A

·½·¨¶þ. Ö¤Ã÷A

BÊǺãÕæ¹«Ê½¡£ Q

R)

(P

Q)

(PQ

R)ºãÕæ£¬Òò´Ë£¬R)

(P

Q)

B¡£

ÓÉÀý2.2.1Öª£¬(P

Á¢¼´¿ÉµÃµ½Àý2.2.4ÖеĽáÂÛ£º(P(P

R)£¬¼´A

B¡£

Àý2.2.5 ÉèA¡¢BºÍCΪÃüÌ⹫ʽ£¬ÇÒAÊö£¨¿Ï¶¨»ò·ñ¶¨£©ÏÂÁйØÏµÊ½µÄÕýÈ·ÐÔ¡£ £¨1£©(A£¨2£©(A½â£ºÓÉAΪ0¡£

ÕæÖµ±íÈçÏ£º A B C AB (AC) C)

(B( B

C)£» C)¡£

B¡£Çë·Ö±ð²û

BÖª£¬ABÊǺãÕæ¹«Ê½£¬¹ÊA=1ʱ£¬B²»¿ÉÄÜ

C) (A C) (B0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 ±í2.2.3

´ÓÕæÖµ±í¿ÉÒÔ¿´³ö£¬(A(A

C) ( B

C) (A

C) (B

C) ( B1 1 1 1 1 1 1 1 0 1 1 1 C) C)ÊǺãÕæ¹«Ê½£¬ËùÒÔ£¬

C) ( B

C)

C) (BC)ÕýÈ·£»(A

²»ÊǺãÕæ¹«Ê½£¬ËùÒÔ£¬(A

Àý2.2.6 ÉèA=(RÖ¤Ã÷£ºÎÒÃÇÀ´Ö¤Ã÷A ((R(

P

Q)

C) ( BC)²»ÕýÈ·¡£

P) Q£¬B= PBºãÕæ¡£

Q£¬Ö¤Ã÷AÔ̺­B¡£

P) Q) ( P Q)= ( ( RP) Q)

=(((

P

Q)

RP) Q)

=(R( P

Q)

Q) ( P Q)

=1

·½·¨Èý. ÀûÓÃһЩ»ù±¾µÈ¼Ûʽ¼°Ô̺­Ê½½øÐÐÍÆµ¼¡£ ¶ÔÓÚÀý2.2.6£¬ÓÉ»ù±¾µÈ¼Ûʽ¿ÉµÃ£º

A=(R=

P) (

R Q P)

Q P

Q) Q)

Q) ( P

Q)

Q

= (R=( R=( R

Óɽ̲ÄÖлù±¾Ô̺­Ê½2. P(P

Q)£¬¼´AÔ̺­B¡£

P) Q) Q) Q

(( P

Q¿ÉÖª£¬( R

·½·¨ËÄ. ÈÎÈ¡½âÊÍI£¬ÈôIÂú×ãA£¬ÍùÖ¤IÂú×ãB¡£

Àý2.2.7 ÉèA= PÖ¤Ã÷AÔ̺­B¡£

Ö¤Ã÷£ºÈÎÈ¡½âÊÍI£¬ÈôIÂú×ãA£¬ÔòÓÐÈçÏÂÁ½ÖÖÇé¿ö£º £¨1£©ÔÚ½âÊÍIÏ£¬PΪ¼Ù£¬Õâʱ£¬BµÈ¼ÛÓÚ(RQ) £¨R

Q£©£¬Òò´Ë£¬IÒàÂú×ãB¡£

R

Q

Q£¬B=(R

Q)

£¨£¨P

R£©

Q£©£¬

£¨2£©ÔÚ½âÊÍIÏ£¬PÎªÕæ£¬QÎªÕæ£¬ËùÒÔ£¬PÎªÕæ£¬¹ÊBÎªÕæ£¬¼´£¬IÂú×ãB¡£ ×ÛÉÏ£¬IÂú×ãB£¬Òò´Ë£¬AÔ̺­B¡£