小学六年级应用题分类练习620题 下载本文

17个单位,那么实际每天节约用煤为1个单位,实际每天用煤为16个单位。原计划烧煤192天,一共可以节约出192个单位的煤,这些煤还可以烧: 192÷16=12(天)

答:节约出来的煤还可以再烧12天。

例8、 有1993个人和1993斤面粉。第1个人拿走了全部面粉的1/2,第2个人拿走了余下面粉的1/3,第3个人拿走了再余下的1/4,??第1992 走了。那么第1993个人拿走了多少斤面粉?

分析与解 解答这道题不宜采用分步计算的方法。1993斤面粉被第1个人拿走1/2,剩下的当然是全部的1/2,这一算就出现了小数,再算第2个人拿走后剩下多少斤面粉就更复杂了。因此解答时应从整体去思考,列综合算式解答,就简便多了。依题意列式为 答:第1993个人拿走了1斤面粉。

例9、食堂买来一批面粉,第一天吃这些面粉总量的,第二天吃了余下面粉总量的的,以后7天,每天吃去当天面粉总量的,,??,。最后,第十天吃了4袋,正好吃完。这批面粉原来共有多少袋?

分析与解 根据题意,从第10天、第9天,??倒推回去,列式求出这批面粉原来共有 =40(袋) 也可以这样想:

这些面粉共吃了10天,把这堆面粉平均分成10堆。第1天吃了这批面

每天吃的都是平均分成10堆中的1堆,第10天吃的那一堆正好是4袋,因此,这批面粉共有 4×10=40(袋)

答:这批面粉原来共有40袋。

例10、 有两个容器,第一个容器中有1升水,第二个容器是空的。将第一个容器中的水的1/2倒入第二个容器中,然后将第二个容器里的水的1/3倒回第一个容器中,然后再将第一个容器里的水的1/4倒入第二个容器中,??如此进行下去,倒了1993次后,第一个容器里有多少水?

分析与解 根据题意,把倒的次数、两杯中水的数量列成下表。

从上表不难看出,凡是倒了1、3、5、??奇数后,第一个容器里的水都是1/2升。当然,倒了1993次后,第一个容器里的水也是1/2升。 也可以列式计算:

例11、 幼儿园小朋友过“六一”儿童节,阿姨给小朋友分苹果,开始每人分3个,结果有15个人只分到2个;后来又买来40个苹果,又分给小朋友,结果正好每个分到4个。幼儿园一共有多少个小朋友?

分析与解 题中告诉我们,开始每人分3个,结果有15个小朋友只分到2个,就是说,每人分3个缺少15个苹果。后来又买来40个苹果,又分给小朋友,结果正好每人分到4个。把这40个苹果先拿出15个,分给开始分时每人只分到2个苹果的那些小朋友,这时还剩下25个苹果,每人再分1个,正好是每人分到4个苹果。因此得出,幼儿园共有25个小朋友。 (40-15)÷(4-3) =25÷1 = 25(人)

答:幼儿园一共有25个小朋友。

例12、 一个箱子里装满了实心球,连箱子共重12千克。从箱中取出实心球的1/4后,剩下的实心球连箱共重9.5千克。问箱子重多少千克?

分析与解 一个箱子里装满了实心球,连箱子共重12千克;从箱中取实心球的1/4后,剩下实心球的3/4连箱子共重9.5千克。由此可以得出,实心球的1/4重(12-9.5)千克,那么

实心球的总重是: =10(千克) 箱子重量是: 12-10=2(千克) 答:箱子重2千克。

例13、用绳子测井深。把绳子折成三股来量,井外余1米;把绳子折成四股来量,井外余米。问井深多少米?

分析与解 把绳子的全长看作“1”,把绳子折成三股来量,就是用绳长的1/3来量;把绳子折成四股来量,就是用绳长的1/4来量。井外所余绳子长度之差就是绳长1/3与绳长1/4之差。于是得到绳子的全长是: 也可以这样想: 正好是绳子的长度。 正好是绳子的长度。 好是井的深度。

于是求出井的深度是:

例14、 同学们搞野营活动。一个同学到负责后勤工作的老师那里去领碗。老师问他领多少,他说领55个。又问“多少人吃饭?”他说:“一个人1个饭碗,两个人1个菜碗,三个人1个汤碗。”请算一算这个同学给参加野营活动的多少人领碗?

分析与解 先算出平均1人要用多少个碗,再算出多少人需要55个碗。列式是 还可以这样解答:

吃饭时每人1个饭碗,要用多少个饭碗,就表示有多少人参加野营活动。题中又说,两个人1个菜碗,三个人1个汤碗。我们知道,2和3的最小公倍数是6,就是说,当有6个人吃饭时,要用6个饭碗,3个菜碗,2个汤碗。于是得出有6个人吃饭时,共需要6+3+2=11个碗。

于是,我们把参加野营活动的人,分成每6个人一组,每组人吃饭时要用11个碗。

由55÷11=5可以知道,领55个碗说明吃饭的人正好分成了5组,于是求出这个同学要给6×5=30人领碗。

答:这个同学给参加野营活动的30人领碗。 例15、儿子的年龄是母亲年龄的,是父亲年龄的,父亲年龄比母亲大2岁。那么父亲几岁?母亲几岁?儿子几岁?

岁,这时父亲比母亲大1岁。

题中告诉我们,父亲年龄比母亲大2岁,因此可知,母亲为 40岁,父 答:父亲42岁,母亲40岁,儿子12岁。

例16、教室里有一些男生和一些女生。老师问他们人数。一个男生告诉老 分析与解 题中告诉我们,除去1个男生,男生人数是女生人数的 题中还告诉我们,除去1个女生,女生人数是男生人数的3/5。

示女生人数,除去1个女生,正好是9个女生。分母部分的15恰好表示男生人数,除去1个男生,正好是14个男生。

由此得出,教室里有男生15人,女生10人。 答:教室里有男生15人,女生10人。

例17、 某书店原有书若干本,第一天售出全部的1/2,第二天又运进900本,第三天售出的书比现有的书的1/3还多40本,结果还剩下800本。书店里原有书多少本? 分析与解 根据题中给出的条件,可以倒推回去,求出书店里原有书多少本。

假设第三天售出的书比现有的书的1/3不多40本(即少售了40本), ,于是可以求出第三天售书前书店里有书多少本。

假设第二天不运进900本,这时书店里的书恰好是第一天卖出原来的书 求出书店里原有书的本数。 =720(本)

答:书店里原有书720本。

例18、 有7袋米,它们的重量分别是 12千克、 15千克、17千克、20千克、22千克、24千克、26千克。甲先取走一袋,剩下的由乙、丙、丁取走。已知乙和丙取走的重量恰好一样多,而且都是丁取走重量的2倍。那么甲先取走的那一袋的重量是多少千克?

分析与解 题中告诉我们,甲先取走一袋后,剩下的由乙、丙、丁取走。已知乙和丙取走的重量恰好一样多,而且都是丁取走的重量的2倍,因此乙、丙、丁三人取走的重量是了取走的重量的5倍。 而7袋米的总重量是 12+15+17+20+22+24+26=136(千克)

从136中减去5的倍数,剩下的就是甲取走的重量的千克数。或者说,从136千克中减去甲取走那袋米的重量,剩下的重量一定是5的倍数。要使136减去一个数后得数能被5除尽,这个数的个位数字一定