(Ⅰ)求证:BC//平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45,求平面FGH与
平面ACFD所成的角(锐角)的大小.
18.(2015陕西)如图1,在直角梯形ΑΒCD中,ΑD//ΒC,?ΒΑD?o?2,ΑΒ?ΒC?1,
将?ΑΒΕ沿BE折起到?A1BE的ΑD?2,Ε是ΑD的中点,O是AC与BE的交点.位置,如图2.
(Ⅰ)证明:CD?平面A1OC;
(Ⅱ)若平面A1BE?平面BCDE,求平面A1BC与平面A1CD夹角的余弦值. 19.(2014新课标2)如图,四棱锥P?ABCD中,底面ABCD为矩形,PA⊥平面ABCD,
E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D?AE?C为60°,AP=1,AD=3,求三棱锥E?ACD的体积.
20.(2014山东)如图,在四棱柱ABCD?A1B1C1D1中,底面ABCD是等腰梯形,
?DAB?60o,AB?2CD?2,M是线段AB的中点.
D1A1C1B1DAMCB
(Ⅰ)求证:C1M//平面A1ADD1;
(Ⅱ)若CD1垂直于平面ABCD且CD1=3,求平 面C1D1M和平面ABCD所成的
角(锐角)的余弦值.
21.(2014辽宁)如图,?ABC和?BCD所在平面互相垂直,且AB?BC?BD?2,
?ABC??DBC?1200,E、F分别为AC、DC的中点.
(Ⅰ)求证:EF?BC;
(Ⅱ)求二面角E?BF?C的正弦值.
AEBDF
C22. (2014新课标1)如图三棱锥ABC?A1B1C1中,侧面BB1C1C为菱形,AB?B1C. (Ⅰ) 证明:AC?AB1;
o(Ⅱ)若AC?AB1,?CBB1?60,AB?BC,求二面角A?A1B1?C1的余弦值.
23.(2014福建)在平行四边形ABCD中,AB?BD?CD?1,AB将?ABD沿BD折起,使得平面ABD?平面BCD,如图.
?BD,CD?BD,
AMBCD
(Ⅰ)求证:AB?CD;
(Ⅱ)若M为AD中点,求直线AD与平面MBC所成角的正弦值. 24.(2014浙江)如图,在四棱锥A?BCDE中,平面ABC?平面BCDE,
?CDE??BED?90o,AB?CD?2,DE?BE?1,AC?2.
(Ⅰ)证明:DE?平面ACD; (Ⅱ)求二面角B?AD?E的大小.
ADEBC
025.(2014广东)如图4,四边形ABCD为正方形,PD?平面ABCD,?DPC?30,
AF?PC于点F,FE//CD,交PD于点E.
(Ⅰ)证明:CF?平面ADF (Ⅱ)求二面角D?AF?E的余弦值.
26.(2014湖南)如图,四棱柱ABCD?A1B1C1D1的所有棱长都相等,ACIBD?O,
AC11IB1D1?O1,四边形ACC1A1和四边形BDD1B1均为矩形.
(1)证明:O1O?底面ABCD;
o(2)若?CBA?60,求二面角C1?OB1?D的余弦值.
A1B1O1C1D1ABOCD
27.(2014陕西)四面体ABCD及其三视图如图所示,过被AB的中点E作平行于AD,BC
的平面分别交四面体的棱BD,DC,CA于点F,G,H.
A1HEFBDC22主视图左视图G俯视图
(Ⅰ)证明:四边形EFGH是矩形;
(Ⅱ)求直线AB与平面EFGH夹角?的正弦值.
28.(2013新课标Ⅰ)如图,三棱柱ABC?A1B1C1中,CA?CB,AB?AA1,?BAA1=60°.
(Ⅰ)证明AB?A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB?CB,求直线A1C与平面BB1C1C所成角的
正弦值.
29.(2013新课标Ⅱ)如图,直三棱柱ABC?A1B1C1中,D,E分别是AB,BB1的中点,
AA1?AC?CB?2AB2