22
¹²µã£¬±ØÐëʹ·½³Ì(x£a)£«2px£½r(x¡Ý0)ÓÐÇÒ½öÓÐÒ»¸ö½âx£½0£¬¿ÉµÃa¡Üp.¹ÊÑ¡B.
2
2£®Èçͼ£¬ÒÑÖªÅ×ÎïÏߵķ½³ÌΪx£½2py(p>0)£¬¹ýµãA(0£¬£1)×÷Ö±ÏßlÓëÅ×ÎïÏßÏཻÓÚP£¬QÁ½µã£¬µãBµÄ×ø±êΪ(0£¬1)£¬Á¬½ÓBP£¬BQ£¬ÉèQB£¬BPµÄÑÓ³¤ÏßÓëxÖá·Ö±ðÏཻÓÚM£¬NÁ½µã£®Èç¹ûQBµÄбÂÊÓëPBµÄбÂʵij˻ýΪ£3£¬Ôò¡ÏMBNµÄ´óСµÈÓÚ( )
222
¦ÐA. 22¦ÐC. 3¦Ð 4¦ÐD. 3B.
x2x212
½âÎö£ºÑ¡D.ÓÉÌâÒâÉèP(x1£¬)£¬Q(x2£¬)(x1¡Ùx2)£¬ÉèPQËùÔÚÖ±Ïß·½³ÌΪy£½kx£1´úÈë
2p2p22
x£½2py£¬ÕûÀíµÃ£ºx£2kpx£«2p£½0£¬
x2x221
£1£1?x1£«x2£½2kp£¬2p2p?
Ôò?kQB£½£¬kPB£½£¬
xx21?xx£½2p.?12
¿ÉµÃkQB£«kPB£½0£¬ÓÖÒòΪkQB¡¤kPB£½£3£¬
¦Ð¦Ð
ËùÒÔkQB£½£3£¬kPB£½3£¬¼´¡ÏBNM£½£¬¡ÏBMN£½£¬
33¦Ð
ËùÒÔ¡ÏMBN£½¦Ð£¡ÏBNM£¡ÏBMN£½.
3
2
3£®ÉèÅ×ÎïÏßy£½4xµÄ½¹µãΪF£¬¹ýµãM(2£¬0)µÄÖ±ÏßÓëÅ×ÎïÏßÏཻÓÚA£¬BÁ½µã£¬ÓëÅ×Îï
3S¡÷BCFÏßµÄ×¼Ïß½»ÓÚµãC£¬|BF|£½£¬Ôò£½________.
2S¡÷ACF311
½âÎö£ºÒòΪ|BF|£½£¬ËùÒÔBµÄºá×ø±êΪ£¬²»·ÁÉèBµÄ×ø±êΪ(£¬£2)£¬ËùÒÔABµÄ·½³Ì
22222
Ϊy£½(x£2)£¬
3
122
´úÈëy£½4x£¬µÃ2x£17x£«8£½0£¬½âµÃx£½»ò8£¬¹ÊµãAµÄºá×ø±êΪ8.¹ÊAµ½×¼ÏߵľàÀë
2
Ϊ8£«1£½9.
3
S¡÷BCF|BC|Bµ½×¼ÏߵľàÀë21
£½£½£½£½. S¡÷ACF|AC|Aµ½×¼ÏߵľàÀë96
1´ð°¸£º 6
2
4£®Å×ÎïÏßy£½2px(p>0)µÄ½¹µãΪF£¬ÒÑÖªµãA£¬BΪÅ×ÎïÏßÉϵÄÁ½¸ö¶¯µã£¬ÇÒÂú×ã¡ÏAFB£½
|MN|
120¡ã£¬¹ýÏÒABµÄÖеãM×÷Å×ÎïÏß×¼ÏߵĴ¹ÏßMN£¬´¹×ãΪN£¬ÔòµÄ×î´óֵΪ________£®
|AB|
22222
½âÎö£ºÓÉÓàÏÒ¶¨Àí£¬µÃ|AB|£½|AF|£«|BF|£2|AF|¡¤|BF|cos 120¡ã£½|AF|£«|BF|£«
5
|AF|¡¤|BF|£¬
11
¹ýA£¬B×÷AA¡ä£¬BB¡ä´¹Ö±ÓÚ×¼Ïߣ¬Ôò|MN|£½(|AA¡ä|£«|BB¡ä|)£½(|FA|£«|FB|)£¬
22
|MN||FA|£«|FB|ËùÒÔ£½ |AB|2|AB|
|FA|£«|FB|
£½ 22
2|AF|£«|BF|£«|FA|¡¤|FB|
12
£½ 22
|AF|£«|BF|£«|FA|¡¤|FB|
2
£¨|AF|£«|BF|£©
12
£½ 2£¨|AF|£«|BF|£©£|AF|¡¤|BF|
2
£¨|AF|£«|BF|£©11223
£½¡Ü£½£¬
|AF|¡¤|BF||AF|£«|BF|231££¨£©2
£¨|AF|£«|BF|£©2
1£2£¨|AF|£«|BF|£©
µ±ÇÒ½öµ±|AF|£½|BF|ʱ£¬µÈºÅ³ÉÁ¢£®
3
´ð°¸£º
35£®ÒÑÖªÅ×ÎïÏßC£ºy£½2px(p>0)¾¹ýµãP(2£¬4)£¬Ö±Ïßl£ºy£½3x£23½»CÓÚA¡¢BÁ½µã£¬ÓëxÖáÏཻÓÚµãF.
2
(1)ÇóÅ×ÎïÏß·½³Ì¼°Æä×¼Ïß·½³Ì£»
(2)ÒÑÖªµãM(£2£¬5)£¬Ö±ÏßMA¡¢MF¡¢MBµÄбÂÊ·Ö±ðΪk1¡¢k2¡¢k3£¬ÇóÖ¤£ºk1¡¢k2¡¢k3³ÉµÈ²îÊýÁУ®
2
½â£º(1)ÒòΪÅ×ÎïÏßC£ºy£½2px(p>0)¾¹ýµãP(2£¬4)£¬
2
ËùÒÔ4£½2p¡Á2£¬ËùÒÔp£½4£¬
2
ËùÒÔÅ×ÎïÏߵķ½³ÌÊÇy£½8x£¬ ËùÒÔÅ×ÎïÏß×¼Ïß·½³ÌÊÇx£½£2.
(2)ÒòΪֱÏßl£ºy£½3x£23ÓëxÖáÏཻÓÚµãF£¬ ËùÒÔF(2£¬0)£®
5£05
ÒòΪM(£2£¬5)£¬ËùÒÔk2£½£½£. £2£24
ÉèA(x1£¬y1)¡¢B(x2£¬y2)£¬ÓÉ·½³Ì×é?
?y£½3x£23£¬
µÃ
?y2£½8x6
3x£20x£«12£½0.
20
·¨Ò»£ºx1£«x2£½£¬x1x2£½4.
3
2
y1£53x1£23£5
£½£¬ x1£«2x1£«2y2£53x2£23£5k3£½£½£¬
x2£«2x2£«2ËùÒÔk1£«k3£½
£¨x2£«2£©£¨3x1£23£5£©£«£¨x1£«2£©£¨3x2£23£5£©
£¨x1£«2£©£¨x2£«2£©
23x1x2£5£¨x1£«x2£©£83£20£½ x1x2£«2£¨x1£«x2£©£«4
ËùÒÔk1£½
20
23¡Á4£¡Á5£83£20
3
£½ 204£«2¡Á£«4
3
5£½££¬
2
ËùÒÔk1£«k3£½2k2£¬
ËùÒÔk1¡¢k2¡¢k3³ÉµÈ²îÊýÁУ®
2x2£½£¬
3?x1£½6£¬
·¨¶þ£º?
43?y1£½43£¬
y2£½££¬3
?????
243
¼´A(6£¬43)¡¢B(£¬£)£¬
33
ËùÒÔk1£½
y1£543£5y2£5£½£¬k3£½£½x1£«28x2£«2
£
43
£5343£«15
£½££¬
28£«23
5
ËùÒÔk1£«k3£½££¬
2
ËùÒÔk1£«k3£½2k2£¬
ËùÒÔk1¡¢k2¡¢k3³ÉµÈ²îÊýÁУ®
6£®(Ñ¡×öÌâ)ÒÑÖªÅ×ÎïÏßEµÄ¶¥µãÔÚԵ㣬½¹µãΪF(2£¬0)£¬ (1)ÇóÅ×ÎïÏß·½³Ì£»
(2)¹ýµãT(t£¬0)×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïß·Ö±ð½»Å×ÎïÏßEÓÚA£¬B£¬C£¬DËĵ㣬ÇÒM£¬N·Ö±ðΪÏ߶ÎAB£¬CDµÄÖе㣬Çó¡÷TMNµÄÃæ»ý×îСֵ£®
½â£º(1)ÓÉÌâÒâÖª£¬p£½4£¬¹ÊËùÇóÅ×ÎïÏß·½³ÌΪ y2£½8x.
(2)¸ù¾ÝÌâÒâµÃAB£¬CDµÄбÂÊ´æÔÚ£¬
1
¹ÊÉèÖ±ÏßAB£ºx£½my£«t£¬Ö±ÏßCD£ºx£½£y£«t£¬
mA(x1£¬y1)£¬B(x2£¬y2)£¬C(x3£¬y3)£¬D(x4£¬y4)£¬ ??x£½my£«t£¬2ÓÉ?2µÃy£8my£8t£½0. ?y£½8x?
7
ËùÒÔ
y1£«y2
22
2
£½4m?
x1£«x2
2
£½4m£«t?M(4m£«t£¬4m)£¬
ͬÀí¿ÉµÃN(44
m2£«t£¬£m)£¬
ËùÒÔ|TN|£½16164
m4£«m2£½|m|
2
m2£«1£¬ |TM|£½16m4£«16m2£½4|m|m2£«1£¬
ËùÒÔS12|TM||TN|£½8(|m|£«1
¡÷TMN£½|m|
)¡Ý16.
µ±ÇÒ½öµ±|m|£½1ʱ£¬Ãæ»ýÈ¡µ½×îСֵ16.
8