(完整word版)《数列》单元测试题(含答案),DOC 下载本文

欢迎阅读

2Sn?n?3n?1?(3?32?33???3n),

即2Sn?n?3n?13(1?3n)?,

1?3(2n?1)3n?13?. ∴Sn?4420.(Ⅰ)由a1?1,Sn?1?4an?2,有

a1?a2?4a1?2,∴a2?3a1?2?5,∴b1?a2?2a1?3. ∵Sn?1?4an?2, ① ∴Sn?4an?1?2(n?2), ② 由①-②,得an?1?4an?4an?1, ∴an?1?2an?2(an?2an?1), ∵bn?an?1?2an,∴bn?2bn?1, ∴数列{bn}是首项为3,公比为2的等比数列. (Ⅱ)由(Ⅰ),得bn?an?1?2an?3?2n?1, ∴an?1an3??, 2n?12n4an31}是首项为,公差为的等差数列, n242∴数列{∴an1331??(n?1)??n?, 4442n2∴an?(3n?1)?2n?2.

21.(Ⅰ)由已知,得?Sn?1?Sn???Sn?Sn?1??1(n?2,n?N*),

即an?1?an?1(n?2,n?N*),且a2?a1?1, ∴数列?an?是以a1?2为首项,1为公差的等差数列, ∴an?n?1.

欢迎阅读

欢迎阅读

(Ⅱ)∵an?n?1,∴bn?4n?(?1)n?1??2n?1,要使bn?1?bn恒成立,

∴bn?1?bn?4n?1?4n???1???2n?2???1?∴3?4n?3????1?∴??1?n?1n?1nn?1??2n?1?0恒成立,

2n?1?0恒成立,

??2n?1恒成立.

(ⅰ)当n为奇数时,即??2n?1恒成立, 当且仅当n?1时,2n?1有最小值为1,∴??1. (ⅱ)当n为偶数时,即???2n?1恒成立, 当且仅当n?2时,?2n?1有最大值?2,∴???2. ∴?2???1,又?为非零整数,则???1. 综上所述,存在???1,使得对任意n?N*,都有bn?1?bn. 欢迎阅读