Êýѧ·ÖÎö13.1Ò»ÖÂÊÕÁ²ÐÔ ÏÂÔØ±¾ÎÄ

µÚÊ®ÈýÕ º¯ÊýÁÐÓ뺯ÊýÏî¼¶Êý

1 Ò»ÖÂÊÕÁ²ÐÔ

Ò»¡¢º¯ÊýÁм°ÆäÒ»ÖÂÊÕÁ²ÐÔ

¸ÅÄÉèf1,f2,¡­,fn,¡­ÊÇÒ»Áж¨ÒåÔÚͬһÊý¼¯EÉϵĺ¯Êý£¬³ÆÎª¶¨ÒåÔÚEÉϵĺ¯ÊýÁУ¬Ò²¿ÉÒÔ¼òµ¥µØÐ´×÷{fn}»òfn, n=1,2,¡­. Éèx0¡ÊE£¬ÒÔx0´úÈ뺯ÊýÁпɵÃÊýÁУºf1(x0),f2(x0),¡­,fn(x0),¡­. Èô¸ÃÊýÁÐÊÕÁ²£¬Ôò³Æ¶ÔÓ¦µÄº¯ÊýÁÐÔÚµãx0ÊÕÁ²£¬x0³ÆÎª¸Ãº¯ÊýÁеÄÊÕÁ²µã. ÈôÊýÁз¢É¢£¬Ôò³Æº¯ÊýÁÐÔÚµãx0·¢É¢. Èôº¯ÊýÁÐÔÚÊý¼¯D?EÉÏÿһµã¶¼ÊÕÁ²£¬Ôò³Æ¸Ãº¯ÊýÁÐÔÚÊý¼¯DÉÏÊÕÁ². ÕâʱDÉÏÿһµãx¶¼ÓÐÊýÁÐ{fn(x)}µÄÒ»¸ö¼«ÏÞÖµÓëÖ®Ïà¶ÔÓ¦£¬ÓÉÕâ¸ö¶ÔÓ¦·¨ÔòËùÈ·¶¨µÄDÉϵĺ¯Êý£¬³ÆÎªÔ­º¯ÊýµÄ¼«ÏÞº¯Êý. Èô°Ñ´Ë¼«ÏÞº¯Êý¼Ç×÷f£¬ÔòÓÐ

n??¡Þlimfn(x)=f(x), x¡ÊD£¬»òfn(x)¡úf(x) (n¡ú¡Þ), x¡ÊD.

ʹº¯ÊýÁÐ{fn}ÊÕÁ²µÄÈ«ÌåÊÕÁ²µã¼¯ºÏ£¬³ÆÎªº¯ÊýÁÐ{fn}µÄÊÕÁ²Óò.

º¯ÊýÁм«Ï޵ĦÅ-N¶¨Ò壺¶Ôÿһ¸ö¹Ì¶¨µÄx¡ÊD£¬ÈθøÕýÊý¦Å£¬ ºã´æÔÚÕýÊýN(¦Å,x)£¬Ê¹µÃµ±n>Nʱ£¬×ÜÓÐ|fn(x)-f(x)|< ¦Å.

Àý1£ºÉèfn(x)=xn, n=1,2,¡­Îª¶¨ÒåÔÚRÉϵĺ¯ÊýÁУ¬Ö¤Ã÷ËüµÄÊÕÁ²ÓòÊÇ(-1,1]ÇÒÓм«ÏÞº¯Êýf(x)=??0£¬|x|?1.

?1£¬x?1 Ö¤£ºÈθøÕýÊý¦Å<1, µ±|x|<1ʱ£¬¡ß|fn(x)-f(x)|=|x|n£¬ ¡àֻҪȡN(¦Å,x)=

ln¦Å£¬µ±n>Nʱ£¬¾ÍÓÐ|fn(x)-f(x)|< ¦Å. ln|x|µ±x=0»òx=1ʱ£¬¶ÔÈκÎÕýÕûÊýn£¬¶¼ÓÐ|fn(x)-f(x)|=0< ¦Å. ¡àfn(x)ÔÚ(-1,1]ÉÏÊÕÁ²£¬ÇÒÓм«ÏÞº¯Êýf(x) =??0£¬|x|?1.

?1£¬x?1 ÓÖµ±|x|>1ʱ£¬ÓÐ|x|n¡ú¡Þ (n¡ú¡Þ)£¬µ±x=-1ʱ£¬¶ÔÓ¦µÄÊýÁÐΪ£º -1,1,-1,1¡­·¢É¢. ¡àº¯ÊýÁÐ{xn}ÔÚ(-1,1]Íâ¶¼ÊÇ·¢É¢µÄ. µÃÖ¤£¡

Àý2£ºÖ¤Ã÷£ºº¯ÊýÁÐfn(x)=

sinnx, n=1,2,¡­µÄÊÕÁ²ÓòÊÇR£¬¼«ÏÞº¯Êýf(x)=0. nsinnx11¡Ü£¬¡àÈθø¦Å>0£¬Ö»Òªn>N=, nn¦ÅÖ¤£º¡ß¶ÔÈÎÒâʵÊýx£¬¶¼ÓоÍÓÐ

sinnx?0< ¦Å£¬µÃÖ¤£¡ n¶¨Òå1£ºÉ躯ÊýÁÐ{fn}Ó뺯Êýf¶¨ÒåÔÚͬһÊý¼¯DÉÏ£¬Èô¶ÔÈθøµÄÕýÊý¦Å£¬×Ü´æÔÚijһÕýÕûÊýN£¬Ê¹µÃµ±n>Nʱ£¬¶ÔÒ»ÇÐx¡ÊD£¬¶¼ÓÐ |fn(x)-f(x)|< ¦Å£¬Ôò³Æº¯ÊýÁÐ{fn}ÔÚDÉÏÒ»ÖÂÊÕÁ²ÓÚf£¬¼Ç×÷ fn(x)?f(x) (n¡ú¡Þ), x¡ÊD.

×¢£º·´Ö®£¬Èô´æÔÚijÕýÊý¦Å0£¬¶ÔÈκÎÕýÊýN£¬¶¼ÓÐDÉÏijһµãx¡¯ÓëÕýÕûÊýn¡¯>N£¬Ê¹|fn(x¡¯)-f(x¡¯)|¡Ý¦Å0£¬Ôòº¯ÊýÁÐ{fn}ÔÚDÉϲ»Ò»ÖÂÊÕÁ²ÓÚf. È磺Àý1Öеĺ¯ÊýÁÐ{xn}ÔÚ(0,1)ÉÏÊÕÁ²ÓÚf(x)=0£¬µ«²»Ò»ÖÂÊÕÁ².

1?11?¡ßÁî¦Å0=£¬¶ÔÈκÎÕýÊýN£¬È¡ÕýÕûÊýn>N+1¼°x¡¯=???¡Ê(0,1)£¬

122?n?ÔòÓÐ|x¡¯2 -0|=1-¡Ý. ¡àº¯ÊýÁÐ{xn}ÔÚ(0,1)Éϲ»Ò»ÖÂÊÕÁ²ÓÚf(x)=0.

1n12º¯ÊýÁÐÒ»ÖÂÊÕÁ²ÓÚfµÄ¼¸ºÎÒâÒ壺¶ÔÈκÎÕýÊý¦Å£¬´æÔÚÕýÕûÊýN£¬¶ÔÓÚÒ»ÇÐÐòºÅ´óÓÚNµÄÇúÏßy=fn(x)£¬¶¼ÂäÔÚÒÔÇúÏßy=f(x)+ ¦ÅÓëy=f(x)- ¦ÅΪ±ß(¼´ÒÔy=f(x)Ϊ¡°ÖÐÐÄÏß¡±£¬¿í¶ÈΪ2¦Å)µÄ´øÐÎÇøÓòÄÚ(Èçͼ1).

(ͼ1)

(ͼ2)

º¯ÊýÁÐ{xn}ÔÚ(0,1)ÄÚ²»Ò»ÖÂÊÕÁ²£¬¼´¶ÔÓÚij¸öÊÂÏȸø¶¨µÄÕýÊý¦Å<1£¬ ÎÞÂÛN¶àô´ó£¬×ÜÓÐÇúÏßy=xn(n>N)²»ÄÜÈ«²¿ÂäÔÚÒÔy=¦ÅÓëy=-¦ÅΪ±ßµÄ´øÐÎÇøÓòÄÚ(Èçͼ2). Èôº¯ÊýÁÐ{xn}Ö»ÏÞÓÚÔÚÇø¼ä(0,b) (b<1)ÄÚÌÖÂÛ£¬ÔòÖ»Òªn>

ln¦Å(ÆäÖÐ0<¦Å<1)£¬ÇúÏßy=xn¾ÍÈ«²¿ÂäÔÚy=¦ÅÓëy=-¦ÅΪ±ßµÄlnb´øÐÎÇøÓòÄÚ£¬ËùÒÔ{xn}ÔÚÇø¼ä(0,b)ÄÚÒ»ÖÂÊÕÁ².

¶¨Àí13.1£º(º¯ÊýÁÐÒ»ÖÂÊÕÁ²µÄ¿ÂÎ÷×¼Ôò)º¯ÊýÁÐ{fn}ÔÚÊý¼¯DÉÏÒ»ÖÂÊÕÁ²µÄ³äÒªÌõ¼þÊÇ£º¶ÔÈθø¦Å>0£¬×Ü´æÔÚÕýÊýN£¬Ê¹µÃµ±n,m>Nʱ£¬ ¶ÔÒ»ÇÐx¡ÊD£¬¶¼ÓÐ|fn(x)-fm(x)|< ¦Å.

Ö¤£º[±ØÒªÐÔ]Èôfn(x)?f(x) (n¡ú¡Þ), x¡ÊD£¬Ôò?¦Å>0£¬?ÕýÊýN£¬ ʹµÃµ±n,m>Nʱ£¬¶ÔÒ»ÇÐx¡ÊD£¬¶¼ÓÐ|fn(x)-f(x)|<¼°|fm(x)-f(x)|<¡à|fn(x)- fm(x)|¡Ü|fn(x)-f(x)|+ |fm(x)-f(x)|<+= ¦Å. [³ä·ÖÐÔ]Èô|fn(x)-fm(x)|< ¦Å, ÔòÓÉÊýÁÐÊÕÁ²µÄ¿ÂÎ÷×¼ÔòÖª£¬ {fn}ÔÚDÉÏÈÎÒ»µã¶¼ÊÕÁ²£¬¼ÇÆä¼«ÏÞº¯Êýf(x)£¬ÔòÓÐ

¦Å2¦Å2¦Å2¦Å. 2m??¡Þlim|fn(x)-fm(x)|=|fn(x)-f(x)|<¦Å£¬Óɶ¨Òå1Öªfn(x)?f(x) (n¡ú¡Þ), x¡ÊD.

¶¨Àí13.2£ºº¯ÊýÁÐ{fn}ÔÚÇø¼äDÉÏÒ»ÖÂÊÕÁ²ÓÚfµÄ³äÒªÌõ¼þÊÇ£º

n??¡Þx?Dlimsup|fn(x)-f(x)|=0.

Ö¤£º[±ØÒªÐÔ]Èôfn(x)?f(x) (n¡ú¡Þ), x¡ÊD£¬Ôò

?¦Å>0£¬?ÕýÕûÊýN£¬µ±n>Nʱ£¬ÓÐ|fn(x)-f(x)|<¦Å, x¡ÊD.

sup|fn(x)-f(x)|=0. ÓÉÉÏÈ·½ç¶¨Ò壬ÓÐsup|fn(x)-f(x)|¡Ü¦Å. ¡ànlim??¡Þx?Dx?Dsup|fn(x)-f(x)|=0£¬Ôò?¦Å>0£¬?ÕýÕûÊýN£¬ [³ä·ÖÐÔ]Èônlim??¡Þx?DʹµÃµ±n>Nʱ£¬ÓÐsup|fn(x)-f(x)|<¦Å. ÓÖ¶ÔÒ»ÇÐx¡ÊD£¬×ÜÓÐ

x?D|fn(x)-f(x)|¡Üsup|fn(x)-f(x)|<¦Å£¬¡à{fn}ÔÚDÉÏÒ»ÖÂÊÕÁ²ÓÚf.

x?D

ÍÆÂÛ£ºº¯ÊýÁÐ{fn}ÔÚDÉϲ»Ò»ÖÂÊÕÁ²ÓÚfµÄ³äÒªÌõ¼þÊÇ£º ´æÔÚ{xn}?D£¬Ê¹µÃ{fn(xn)-f(xn)}²»ÊÕÁ²ÓÚ0.

Àý3£ºÉèfn(x)=nxe-nx, x¡ÊD=R+,n=1,2,¡­.Åбð{fn(x)}ÔÚDÉϵÄÒ»ÖÂÊÕÁ²ÐÔ.

2½â·¨Ò»£º¶ÔÈÎÒâx¡ÊR, limnxen??¡Þ+

-nx2n-2n2x2=0=f(x). ÓÖµ±f¡¯n(x)==0ʱ£¬ 2ex=

12n£¬ÇÒf¡±(

12n)=-

2n2n<0£¬ e22¡àÔÚR+ÉÏ£¬Ã¿¸önxe-nxÖ»ÓÐÒ»¸ö¼«´óÖµµãxn=

limsup|fn(x)-f(x)|=limfn(xn)=limn??¡Þ12n£¬¶ø

n??¡Þx?Dn??¡Þn=+ ¡Þ¡Ù0£¬ 2e¡à{fn(x)}ÔÚDÉϲ»Ò»ÖÂÊÕÁ²ÓÚf.