(1)直接写出y与x的函数关系式;
(2)在这30天内,哪一天的利润是6300元?
(3)设第x天的利润为W元,试求出W与x之间的函数关系式,并求出哪一天的利润最大,最大利润是多少.
24.(10分)(2017?鞍山)如图,一次函数y=x+6的图象交x轴于点A、交y
轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.
(1)求直线CE的解析式;
(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.
七、解答题(本大题共1小题,共12分) 25.(12分)(2017?鞍山)如图,∠MBN=90°,点C是∠MBN平分线上的一点,过点C分别作AC⊥BC,CE⊥BN,垂足分别为点C,E,AC=4 ,点P为线段BE上的一点(点P不与点B、E重合),连接CP,以CP为直角边,点P为直角顶点,作等腰直角三角形CPD,点D落在BC左侧.
(1)求证:=;
(2)连接BD,请你判断AC与BD的位置关系,并说明理由; (3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.
八、解答题(本大题共1小题,共14分)
26.(14分)(2017?鞍山)如图,抛物线y=﹣ x+2与x轴交于A、B两点
(点A在点B的左侧),与y轴交于点C.
(1)试探究△ABC的外接圆的圆心位置,求出圆心坐标; (2)点P是抛物线上一点(不与点A重合),且S△PBC=S△ABC,求∠APB的度数;
第5页(共28页)
(3)在(2)的条件下,点E是x轴上方抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
第6页(共28页)
2017年辽宁省鞍山市中考数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,共24分) 1.(3分)(2017?鞍山)下列各数中,比﹣3小的数是( ) A.﹣2 B.0 C.1 D.﹣4 【考点】18:有理数大小比较.
【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答. 【解答】解:∵﹣4<﹣3<﹣2<0, ∴比﹣3小的数是﹣4, 故选:D.
【点评】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小. 2.(3分)(2017?鞍山)如图所示几何体的左视图是( )
A. B. C. D. 【考点】U2:简单组合体的三视图.
【分析】从左面观察结合体,能够看到的线用实线,看不到的线用虚线. 【解答】解:图中几何体的左视图如图所示:
故选:C. 【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键. 3.(3分)(2017?鞍山)函数y= 中自变量x的取值范围是( ) A.x≥﹣2 B.x>﹣2 C.x≤﹣2 D.x<﹣2 【考点】E4:函数自变量的取值范围.
【分析】根据被开方数大于等于0列式计算即可得解. 【解答】解:由x+2≥0可得x≥﹣2, 故选:A. 【点评】本题主要考查函数自变量的取值范围,掌握二次根式的被开方数是非负数是解题的关键.
第7页(共28页)
4.(3分)(2017?鞍山)一组数据2,4,3,x,4的平均数是3,则x的值为( ) A.1 B.2 C.3 D.4 【考点】W1:算术平均数.
【分析】根据平均数的定义列出方程,解方程可得答案.
【解答】解:根据题意,得:=3,
解得:x=2, 故选:B
【点评】本题主要考查算术平均数,解题的关键是熟练掌握算术平均数的定义. 5.(3分)(2017?鞍山)在平面直角坐标系中,点P(m+1,2﹣m)在第二象限,则m的取值范围为( )
A.m<﹣1 B.m<2 C.m>2 D.﹣1<m<2 【考点】CB:解一元一次不等式组;D1:点的坐标. 【分析】根据第二象限内点的横坐标为负、纵坐标为正得出关于m的不等式组,解之可得.
【解答】解:根据题意,得:
< ,
>
解得m<﹣1, 故选:A. 【点评】本题主要考查解一元一次不等式组的能力,解题的关键是根据点的坐标特点列出关于m的不等式组. 6.(3分)(2017?鞍山)某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x人,绘画小组有y人,那么可列方程组为( )
A. B.
C. D.
【考点】99:由实际问题抽象出二元一次方程组.
【分析】根据题意可得等量关系:书法小组人数×3﹣绘画小组的人数=15;绘画小组人数×2﹣书法小组的人数=5,根据等量关系列出方程组即可. 【解答】解:若设书法小组有x人,绘画小组有y人,由题意得: , 故选:D. 【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
7.(3分)(2017?鞍山)分式方程=﹣2的解为( )
第8页(共28页)