60 - CFX×ܽá - ͼÎÄ ÏÂÔØ±¾ÎÄ

CFX×ܽá

ÕÅÓÀÁ¢ ±àд

2009Äê

Ŀ¼

Ŀ ¼

CFXµÄ°²×° ...................................................................................................................................... 1 CFXǰ´¦Àí ...................................................................................................................................... 1

1. Ðýת»úеµÄ¼¸ÖÖ¼¶¼äģʽ ....................................................................................... 1 2. Ðýת»úеPitch RatioµÄ½éÉÜ ................................................................................... 1 3. Ðýת»úеµÄʱ¼ä²½³¤ÉèÖà ....................................................................................... 1 4. ¹ØÓÚ¸øÑ¹²î¼ÆËãÁ÷Á¿µÄ²âÊÔ½á¹û£¨CFX11.0ÓëFluent6.3.26±È½Ï£© ................. 2 5. CFX»ðÔÖÅçÁÜ·ÂÕæ·½·¨ .......................................................................................... 2 6. CFX-PreÖеÄDomain InterfaceµÄÉèÖÃ˵Ã÷(V12.1) ............................................. 4 7. ÈçºÎÔÚÒ»¸öcaseÖÐʵÏÖ²»Í¬µÄ¼ÆËãÓòʹÓò»Í¬µÄÁ÷Ìå½éÖÊ£¿ .......................... 4

CFXÇó½âÆ÷ ...................................................................................................................................... 4

1. ¼ÆËãʱ³ö´í£º¡°Insufficient Catalogue Size¡±ÈçºÎ½â¾ö£¿ ...................................... 4 2. CFX²¢ÐзÖÇøËã·¨ .................................................................................................. 5 3. CFXÈçºÎÃüÁîʵÏÖÓýá¹ûÎļþ×÷ΪеÄÇó½â³õʼ³¡£¿ ...................................... 5 4. ¹ØÓÚCFX²¢ÐеöÎÊÌ⣿ ................................................................................. 6 5. CFX²¢ÐÐģʽ£º ...................................................................................................... 6 6. keºÍSSTÁ½¸öÄ£ÐͼÆËã×èÁ¦²âÊÔ£¿ ..................................................................... 6 7. CFX½øÐи÷ÏòÒìÐÔ²ÄÁÏ»»ÈȵÄʵÏÖ·½·¨£¿¡¾×ܲ¿»Ø¸´¡¿ .................................. 6 8. CFXÌá½»Çó½â³ö´í£¿ .............................................................................................. 9

CFXºó´¦Àí .................................................................................................................................... 10

1. ÈçºÎÔÚCFX-PostÖÐÇóζȻòÃܶȵÈScalarµÄÌݶȣ¿ ....................................... 10 2. CFXÈçºÎÇóµÃ»»ÈÈϵÊýµÄ£¿ ................................................................................ 10 3. ÔÚCFD-PostÖÐÈçºÎÏÔʾÖÜÏòËٶȺ;¶ÏòËÙ¶È·ÖÁ¿£¿ ....................................... 10 4. ÈçºÎ´´½¨ÈÎÒâÐÎ×´µÄÇÐÃæ£¨Æ½Ãæ»òÇúÃæ£© ......................................................... 10

CFX²¢ÐÐ ........................................................................................................................................ 10

1

ÕýÎÄ

CFXµÄ°²×°

CFXǰ´¦Àí

1. Ðýת»úеµÄ¼¸ÖÖ¼¶¼äģʽ

FrozenRotor:

×ø±êϵ¸Ä±ä£¬µ«×ª×ÓÓ붨×ÓÖ®¼äµÄÏà¶ÔλÖò»±ä£¬Ï൱ÓÚ×¼ÎÈ̬¼ÆËã¡£ÊʺÏÓÚÁ÷ÌåËÙ¶ÈÔ¶´óÓÚ½»½çÃæÎ»ÖõĻúеת¶¯ËÙ¶Èʱ£¨¼´×ªËÙ½ÏÂý£©£¬´ËÄ£ÐͼÆËãÁ¿×îС¡£´ËÁª½á·½Ê½ÏÂÓÐÁ½¸ö²ÎÊý¿ÉÒÔÉèÖãºRotational OffsetºÍTransformation Type. ¶ÔÓÚRotational Offset,¿ÉÒÔÓÃÓÚ²»Ìáǰ¸Ä±äÍø¸ñÏà¶ÔλÖ㬶øÊµÏÖ²»Í¬×ª×Ó/¶¨×ÓÏà¶ÔλÖÃϵÄÁ÷³¡¼ÆËã¡£¶ÔÓÚTransformation Type£¬µ±pitch ratio²»µÈÓÚ1»òÕßµ±interfaceÖеÄÁ½¸öÍø¸ñÃæ²»ÍêÈ«overlapʱ£¬¿ÉÒÔÑ¡Ôñ¡±Automatic¡±£¬µ±interfaceµÄÁ½Íø¸ñÃæÍêÈ«overlapʱ¿ÉÒÔÑ¡Ôñ¡±None¡±¡£ Stage:

¶àҶƬͨµÀ±»Í¬Ê±Çó½âʱ£¬ÔÚÐý×ªÇøÓòºÍ¾²Ö¹ÇøÓòÖ®¼ä½øÐÐÎïÀíÁ¿ÖÜÏòƽ¾ù¡£ÊʺÏÓÚÁ÷Ëٺͻúеת¶¯ËÙ¶ÈÁ¿¼¶Ï൱ʱ£¨¼´×ªËٽϿ죩£¬´ËÄ£ÐͼÆËãÁ¿´óÓÚFrozenRotor£¬´ËÄ£ÐÍÐÍÊʺÏÓڶ༶Ðýת»úеµÄ¼ÆËã¡£ÍÆ¼öÓ¦ÓÃFrozenRotor»ñµÃ³õ½â£¬È»ºóÓ¦ÓÃStage»ñµÃ¾«È·½â¡£´ËÁª½á·½Ê½ÏÂÓÐÒ»¸ö²ÎÊý¿ÉÒÔÉèÖãºPressure Profile Decay , ÕâÊÇΪÁ˱ÜÃâ½»½çÃæÇó½âµÄ²»Îȶ¨ÐÔ,Ò»°ãÉèΪ0.05¡£

Same Frame With Frozen Rotor »òSame Frame With Stage£º

ÊÊÓÃÓÚ×ø±êϵûÓиı䣬¶ø´æÔÚpitch change£¨Æ¥Åä¶È²»µÈÓÚ1£©Ê±¡£Èç¹û´Ëʱ²»Ñ¡ÔñÉÏÊöÁ½Ñ¡Ï¶øÑ¡Ôñ¡°None¡±£¬Ôò³ÌÐò²»»á¿¼ÂÇ¡°pitch change¡±ºÍ¡°shape change¡±µÄÓ°Ïì¡£ Transient Rotor-Stator£º

ÕæÊµ¿¼ÂÇ˲̬ЧӦµÄÄ£ÐÍ£¬¼ÆËãÁ¿×î´ó¡£ÓвÎÊýTransformation Type¿É¹©ÉèÖã¨Ïé¼ûFrozenRotorÖеĽéÉÜ£©¡£

2. Ðýת»úеPitch RatioµÄ½éÉÜ

ÓÐÈýÖÖÑ¡Ôñ£ºAutomatic/Value/Specified Pitch Angles. ÆäÖÐAutomatic×Ô¶¯´¦Àí£»ValueÊǸø¶¨Pitch ratioµÄÖµ£»Specified Pitch AnglesÊÇ·Ö±ðÖÆ¶¨Side1ºÍSide2µÄ½Ç¶È¡£

3. Ðýת»úеµÄʱ¼ä²½³¤ÉèÖÃ

¶ÔÓÚÎÈ̬¼ÆË㣨FrozenRotor/Stage£©£¬Ê±¼ä²½³¤=1/¦Ø£¬È磺תËÙ¦Ø=523rad/s£¬Ôòʱ¼ä²½³¤

1

ÕýÎÄ

=1/523=0.002s. ¶ÔÓÚ˲̬¼ÆË㣨TransientRotor-Stator£©£¬Ê±¼ä²½³¤¡ÜÐýת»úе×ß¹ý1¸öpitchËùÓÃʱ¼äµÄ1/10£¬±ÈÈ磺תËÙ¦Ø=523rad/s£¬¶¯¾²Ò¶Æ¥Åä¹ØÏµÎª60/113£¬Ôòͨ¹ýÒ»¸öpitchµÄʱ¼ä=(2*PI/60)*(1/¦Ø)=2.0e-4s,ÒªÔÚÕâÒ»¸öpitchÉϼÆËãÖÁÉÙÊ®²½£¬ËùÒÔʱ¼ä²½³¤¡Ü2.0e-5s.

4. ¹ØÓÚ¸øÑ¹²î¼ÆËãÁ÷Á¿µÄ²âÊÔ½á¹û£¨CFX11.0ÓëFluent6.3.26±È½Ï£©

£¨²âÊÔ¼¸ºÎÄ£ÐÍ£ºÖ±¹Ü£¬°ë¾¶1cm£¬³¤¶È100cm£© ¹¤¿ö CFX1 ±ß½çÉèÖà (²Î¿¼Ñ¹Á¦=1atm) ²»¿Éѹ¿ÕÆø£º Èë¿Ú×Üѹ=0Pa£¬³ö¿Ú¾²Ñ¹=-8000Pa ¼ÆËã½á¹û Èë¿Ú×Üѹ=-1.0Pa£¬ Èë¿Ú¾²Ñ¹=-4085Pa£¬ ³ö¿Ú¾²Ñ¹=-8001.7Pa£¬ ÖÊÁ¿Á÷Á¿=0.0308kg/s Èë¿Ú×Üѹ=-1.7Pa£¬ Èë¿Ú¾²Ñ¹=-3938Pa£¬ ³ö¿Ú¾²Ñ¹=-8001.9Pa£¬ ÖÊÁ¿Á÷Á¿=0.0294kg/s Èë¿Ú×Üѹ=-171.6Pa£¬ Èë¿Ú¾²Ñ¹= -4024.4Pa£¬ ³ö¿Ú¾²Ñ¹= -8001.8Pa£¬ ÖÊÁ¿Á÷Á¿=-0.0291kg/s Èë¿Ú×Üѹ=0Pa£¬ Èë¿Ú¾²Ñ¹=-3845Pa£¬ ³ö¿Ú¾²Ñ¹=-8000Pa£¬ ÖÊÁ¿Á÷Á¿=0.02925kg/s Èë¿Ú×Üѹ=-170Pa£¬ Èë¿Ú¾²Ñ¹=-3923Pa£¬ ³ö¿Ú¾²Ñ¹=-8000Pa£¬ ÖÊÁ¿Á÷Á¿=0.02889kg/s CFX2 (²Î¿¼Ñ¹Á¦=1atm£¬298K) ÀíÏë¿ÕÆø£º Èë¿Ú×Üѹ=0Pa£¬³ö¿Ú¾²Ñ¹=-8000Pa CFX3 (²Î¿¼Ñ¹Á¦=1atm£¬298K) ÀíÏë¿ÕÆø£º Èë¿Ú×Üѹ=-170Pa£¬³ö¿Ú¾²Ñ¹=-8000Pa Fluent2 (²Î¿¼Ñ¹Á¦=1atm£¬298K) ÀíÏë¿ÕÆø£º Èë¿Ú×Üѹ=0Pa£¬³ö¿Ú¾²Ñ¹=-8000Pa Fluent3 (²Î¿¼Ñ¹Á¦=1atm£¬298K) ÀíÏë¿ÕÆø£º Èë¿Ú×Üѹ=-170Pa£¬³ö¿Ú¾²Ñ¹=-8000Pa

5. CFX»ðÔÖÅçÁÜ·ÂÕæ·½·¨

»ðÔÖÆøÌåÖк¬ÓУºCO/CO2/O2/H2O/N2 ÅçÁÜÒºÌå¾ÍÊÇË®Îí£ºH2O£¨Liquid£©

2

ÕýÎÄ

·ÂÕæ¹ý³Ì£º

1> ¶¨Òå¿É±äÆøÌå»ìºÏÎCO/CO2/O2/H2O/N2£© 2> ¶¨ÒåÒºÌåË®£ºH2O£¨L£© 3> Ò»¶¨Òª¶¨Òå¡°Homogeneous Binary Mixture¡±»ìºÏÎ²ÄÁÏ1ÊÇH2O£¬²ÄÁÏ2ÊÇH2O£¨L£©£¬

¶øÇÒH2OºÍH2O£¨L£©Ö®¼äµÄת»»±ØÐëÉ趨Ϊ¡°Antonie Equation¡±µÄÐÎʽ£¬ÕâÑùÔÚ¶¨Òå¡°Fluid Pairs¡±Ê±Ó¦Óá°Liquid Evaporation Model¡±Ä£ÐÍ¡£ ²Î¿¼ÏÂÃæµÄͼƬ£º

3

ÕýÎÄ

6. CFX-PreÖеÄDomain InterfaceµÄÉèÖÃ˵Ã÷(V12.1)

Ò»¡¢InterfaceµÄÀàÐÍ£º

Áù´óÀཻ½çÃæÀàÐÍ£ºFluid/Fluid¡¢Fluid/Porous¡¢Fluid/Solid¡¢Porous/Porous¡¢Porous/Solid¡¢Solid/Solid.

¶þ¡¢InterfaceÄ£Ð͵ÄÑ¡Ôñ£º

Interface Model Option £ºTranslational Periodicity

Interface Model Option £ºRotational Periodicity

Interface Model Option £ºGeneral Periodicity

Èý¡¢MeshÁ¬½Ó·½Ê½£º

7. ÈçºÎÔÚÒ»¸öcaseÖÐʵÏÖ²»Í¬µÄ¼ÆËãÓòʹÓò»Í¬µÄÁ÷Ìå½éÖÊ£¿

CFXÇó½âÆ÷

1. ¼ÆËãʱ³ö´í£º¡°Insufficient Catalogue Size¡±ÈçºÎ½â¾ö£¿

´ð£ºFrom the Solver Manager, edit your definition file (Tools/Edit Definition File) and add the Catalogue Size Multiplier parameter within the FLOW/SOLVER CONTROL section. Use a real value, like 1.2 or higher until the solver manages.

4

ÕýÎÄ

(´ð°¸À´Ô´ÓÚ£ºwww.cfd-online.com)

2. CFX²¢ÐзÖÇøËã·¨

CFXÓûùÓÚ½ÚµãµÄ·ÖÇøËã·¨£¬ÒòΪÕâÑù¿ÉÒÔ±£Ö¤»ùÓÚ½ÚµãµÄÏßÐÔÇó½âÆ÷µÄÁ¬ÐøÐÔ¡£

ÓÐÆßÖÖ·ÖÇøËã·¨£º 1> MeTiSËã·¨£º ´ËËã·¨ÏȶÔÍø¸ñÐÅÏ¢¹¹½¨³öÒ»¸öÍØÆË¼¸ºÎ£¬È»ºó°ÑÍø¸ñ´Ö»¯½µµÍÖÁ¼¸°Ù¸öµã£¬¶Ô´Ö»¯ºóµÄͼÐζԷֳÉÁ½²¿·Ö£¬°Ñ·Ö¸îºóµÄÇøÓò·µ»ØÍ¶Ó°µ½Ô­Ê¼Ä£ÐÍÉÏ£¬´ïµ½·ÖÇøµÄÄ¿µÄ¡£´ËË㷨ĬÈÏÊÇ»ùÓÚÓò£¨Independent Partitioning£©µÄ»ù´¡ÉÏ·ÖÇø£¬·ÖÇø¹ý³ÌÈç¹û²»Ï뿼ÂǶàÓò´øÀ´µÄÓ°Ï죬ÔòÑ¡Ôñ¡°Coupled Partitioning¡±¡£´Ë·½·¨ÐèÒª½Ï¶àÄÚ´æ¡£ 2> Recursive Coordinate BisectonËã·¨£º ´Ë·ÖÇøËã·¨ÊÇ»ùÓÚÍø¸ñµÄÈ«¾Ö×ø±ê£¬Ã¿²½¶Ô·Ö³ÉÁ½²¿·Öʱ¶¼ÊµÔÚÇø¼ä×î´óµÄ×ø±ê·½ÏòÉϽøÐС£ÕâÖÖËã·¨ËùÐèÒªµÄ¸½¼þÄÚ´æ½ÏС£¬µ«¿ÉÄÜ´øÀ´Ã¿¸ö·ÖÇøÄÚ´æÔÚ¼¸¸ö¹ÂÁ¢Óò¡£ 3> Optimized Recursive Coordinate BisectionËã·¨£º ´ËËã·¨ÀàËÆRecursive Coordinate BisectionËã·¨£¬µ«ÔÊÐíÔÚÈÎÒ»·½ÏòÉÏ·ÖÇø¡£ 4> User Defined DirectionËã·¨£º ÑØ×ÅÓû§Ö¸¶¨µÄʸÁ¿·½ÏòÉÏ·ÖÇø¡£ 5> RadialËã·¨£º ´ËËã·¨ÐèÒªÓû§Ö¸¶¨ÐýתÖᣬȻºó¸ù¾ÝÐýתÖáÔÚÆä¾¶Ïò·½ÏòÉÏ·ÖÇø¡£ 6> CircumferentialËã·¨£º ´ËËã·¨ÐèÒªÓû§Ö¸¶¨ÐýתÖᣬȻºó¸ù¾ÝÐýתÖáÔÚÆäÖÜÏòÉÏ·ÖÇø¡£ 7> Junction BoxËã·¨£º ͨ¹ýCCLÓïÑÔ£¬À´ÊµÏÖÓû§Ö¸¶¨×Ô¼ºµÄ·ÖÇøËã·¨¡£

3. CFXÈçºÎÃüÁîʵÏÖÓýá¹ûÎļþ×÷ΪеÄÇó½â³õʼ³¡£¿

ÃüÁîÈçÏ£ºcfx5solve -def test.def -initial test_001.res

5

ÕýÎÄ

4. ¹ØÓÚCFX²¢ÐеöÎÊÌ⣿

»úÆ÷Âú¸ººÉÔËתΪʲôÓÐʱºò»á³öÏÖ¹ÒÆð²»ËãµÄÏÖÏó£¿ Èç¹ûÂú¸ººÉÔËת£¬ÓпÉÄÜ»á³öÏÖÖмäijЩÊý¾Ý´«µÝ±»ÑÓ³Ù»ò½Ø¶Ï£¬µ¼Ö¼ÆËã¹ÒÆð£¬»òÕß·¢É¢¡£±ðµÄÈí¼þÈçdynaÒ²³öÏÖ¹ýÂú¸ººÉÔËת¹ÒÆðµÄÎÊÌâ¡£½¨Òéÿ¸ö½Úµã²»ÒªÓÃÂú8ºË¡£

´®ÐмÆËã1GÄÚ´æ×î¶àËã¶àÉÙÍòÁùÃæÌåÍø¸ñ£¬¶àÉÙÍòËÄÃæÌåÍø¸ñ£¿ ÁùÃæÍø¸ñ´óÔ¼70Íò½Úµã£»ËÄÃæÌåÍø¸ñ´óÔ¼35Íò½Úµã£¬175Íòµ¥Ôª¡£

²¢ÐмÆË㣬1¸öCPU(2ºË)×î¶à³Ðµ£¶àÉÙÁùÃæÌåÍø¸ñ,¶àÉÙËÄÃæÌåÍø¸ñ£¬1¸ö½Úµã(°ËºË16GÄÚ´æ)×î¶à³Ðµ£¶àÉÙÁùÃæÌåÍø¸ñ£¬¶àÉÙËÄÃæÌåÍø¸ñ£¿ Õâ¸öºÍÄÚ´æÓйØÏµ£¬ÎÒÃÇ1000ÍòhexaËãÀýÔÚ1¸öcpuÉÏÒ²Åܹý£»°ËºË16GÄÚ´æ×î¶à³Ðµ£ÁùÃæÌå1000Íò½Úµã£¬³Ðµ£ËÄÃæÌåÍø¸ñ500Íò½Úµã£¬2500Íòµ¥Ôª¡£

¶àÉÙÁùÃæÌåÍø¸ñ£¬¶àÉÙËÄÃæÌåÍø¸ñÁ¿ÒÔÄÚ½¨Òé²»·Ö½Úµã¼ÆË㣿 tetra£¬Ã¿¸öºË×îÉÙ·ÖÅä3Íò½Úµã£¬hexa£¬Ã¿¸öºË×îÉÙ·ÖÅä7.5Íò½Úµã¡£

5. CFX²¢ÐÐģʽ£º

1> series:µ¥CPU¡£

2> PVM Local Parallel£ºPVM¼´Parallel Virtual Machine. Ö§³ÖÒ칹ϵͳ¡£

3> PVM Distributed Parallel:¶à»úPVM¡£

4> MPICH Local Parallel for Windows£ºMPICH(message-passing libraries)£ºÖ§³Öͬ¹¹ÏµÍ³¡£Í¬¹¹ÏµÍ³Ï£¬MPICH±ÈPVMЧÂʸü¸ß£¬¶øPVM±ÈMPICH¸ü¿É¿¿¡£ 5> MPICH Distributed Parallel for Windows: ¶à»úWindowsϵͳMPICH¡£ 6> RSH·þÎñ£ºRemote Shell Service¡£

6. keºÍSSTÁ½¸öÄ£ÐͼÆËã×èÁ¦²âÊÔ£¿

¹ÜÐΣ¨½éÖÊ£ºË®£© Ö±¹Üd=2cm/L=100cm Ö±¹Üd=2cm/L=100cm ²¨Îƹܣ¿

ÍÄÁ÷Ä£ÐÍ ke SST Á÷ËÙ 0.5m/s 0.5m/s ×èÁ¦ 0.053N 0.053N ѹ²î 174Pa 174Pa 7. CFX½øÐи÷ÏòÒìÐÔ²ÄÁÏ»»ÈȵÄʵÏÖ·½·¨£¿¡¾×ܲ¿»Ø¸´¡¿

Hi Zhenya-

6

ÕýÎÄ

The CFX solver supports orthotropic thermal conductivity. It is a hidden beta feature which means that you need to set it up by editing the CCL outside of CFX-Pre.

To do this, set up your simulation and write out a definition file with the thermal conductivity for the material of interest set to a constant value.

1. You will then extract the ccl content from the definition file to a text file using the folloiwng command which you can

execute from the CFX command prompt (CFX Launcher/Tools/Command Line). Suppose that your definition file is named test.def. You would type the following command :

cfx5cmds -read -def test.def -text test.ccl

You will then have a text file called test.ccl with the problem setup information.

2. You then edit the test.ccl file and replace, for the material of interest.

THERMAL CONDUCTIVITY:

Option = Value

Thermal Conductivity = 12.0 [W m^-1 K^-1]

END

with:

THERMAL CONDUCTIVITY:

Option = Orthotropic Cartesian Components

Thermal Conductivity X Component = 1 [W m^-1 K^-1]

Thermal Conductivity Y Component = 2 [W m^-1 K^-1]

Thermal Conductivity Z Component = 3 [W m^-1 K^-1]

7

ÕýÎÄ

END

I used 1,2,3 for convenience.

This is for the Cartesian Components, if you prefer to use Cylindrical Components, use the following text to replace the old one:

THERMAL CONDUCTIVITY:

Option = Orthotropic Cylindrical Components

Thermal Conductivity Axial Component = 1 [W m^-1 K^-1]

Thermal Conductivity Theta Component = 2 [W m^-1 K^-1]

Thermal Conductivity r Component = 3 [W m^-1 K^-1]

AXIS DEFINITION:

Option = Coordinate Axis

Rotation Axis = Coord 0.1

END

END

Where Coord 0.1 is the global X axis, so global Y and Z axis will be Coord 0.2 and Coord 0.3, respectively.

3. You then write the modified test.ccl back to the definition file using the following command:

cfx5cmds -write -def test.def -txt test.ccl

4. You will see in your subsequent output file (when running the case)

8

ÕýÎÄ

that the orthotropic values are there. --

C. Kurt Svihla, Ph.D.

Senior Technical Services Engineer ANSYS, Inc. Southpointe

275 Technology Drive Canonsburg PA 15317 Tel: (724)514-3600 Fax: (724)514-5096 www.ansys.com

8. CFXÌá½»Çó½â³ö´í£¿

ÔÚwindows64λÏÂÌá½»ÈÎÎñ£¬ÓÃÁ˱ê×¼ËãÀýµÄ¸÷¸ö*.defÎļþ¶¼²»ÐУ¬³ö´í£¨¼ûÉÏͼ£©¡£Ìá½»¹ý³ÌûÓÐÑ¡Ôñ²¢ÐУ¬¼´Ö»Êǵ¥CPU¾Í³ö´í¡£ÎªÊ²Ã´£¿

9

ÕýÎÄ

CFXºó´¦Àí

1. ÈçºÎÔÚCFX-PostÖÐÇóζȻòÃܶȵÈScalarµÄÌݶȣ¿

2. CFXÈçºÎÇóµÃ»»ÈÈϵÊýµÄ£¿

´ð£ºh=q/(T-Tbulk)£»TbulkÒ»°ãѡȡÖ÷Á÷ζȻòÀ´Á÷ζȻòÈ«³¡Æ½¾ùζȡ£ÎªÁËÈÃÊýÖµÇó½âµÄhºÍʵÑéÊý¾ÝÒ»Ö£¬ÐèÒªÊýÖµÇó½âµÄËùʹÓõÄTbulkºÍʵÑéËùÑ¡ÔñµÄTbulkÏàͬ¡£

3. ÔÚCFD-PostÖÐÈçºÎÏÔʾÖÜÏòËٶȺ;¶ÏòËÙ¶È·ÖÁ¿£¿

´ð£ºÔÚwww.cfd-online.comÉÏ»ñµÃ´ð°¸ÈçÏ£¬ÊÂʵ֤Ã÷ÊÇ¿ÉÐеġ£

In cfx post go to turbo mode then define your rotation axis next click calculate velocity components.now you can plot the variables you need.

4. ÈçºÎ´´½¨ÈÎÒâÐÎ×´µÄÇÐÃæ£¨Æ½Ãæ»òÇúÃæ£©

´ð£º°ÑÏë´´½¨µÄÇÐÃæ£¨ÈÎÒ⸴ÔÓ¶ÈµÄÆ½Ãæ»òÇúÃæ£©Í¨¹ýCADÈí¼þ´´½¨³öÀ´£¬¸ø´ËÇÐÃæ»®·ÖÍø¸ñ£¬°Ñ´ËÍø¸ñ¶ÁÈëµ½CFX-PostÖУ¨Ò²¿ÉÒÔÏÈÉú³É*.defÎļþÔÚ¶ÁÈëCFX_Post£©£¬Í¨¹ý¡°File-Export...¡±°Ñ´Ë±ß½ç±£´æ³É*.csv¸ñʽµÄÎı¾Îļþ¡£Ó¦Óá°User Surface¡±·½·¨´´½¨£¬Ñ¡Ôñ¡°From File¡±·½·¨£¡°Ñ´Ë*.csvÎļþ¶ÁÈë¼´¿É¡£

CFX²¢ÐÐ

10