.
[题目分析]
假定第一个结点中数据具有最大值,依次与下一个元素比较,若其小于下一个元素,则设其下一个元素为最大值,反复进行比较,直到遍历完该链表。
[算法描述]
ElemType Max (LinkList L ){
if(L->next==NULL) return NULL;
pmax=L->next; //假定第一个结点中数据具有最大值 p=L->next->next;
while(p != NULL ){//如果下一个结点存在 }
return pmax->data;
if(p->data > pmax->data) pmax=p;//如果p的值大于pmax的值,则重新赋值 p=p->next;//遍历链表
(7)设计一个算法,通过遍历一趟,将链表中所有结点的链接方向逆转,仍利用原表的存储空间。
[题目分析]
从首元结点开始,逐个地把链表L的当前结点p插入新的链表头部。
[算法描述]
void inverse(LinkList &L) {// 逆置带头结点的单链表 L p=L->next; L->next=NULL; while ( p) {
q=p->next; // q指向*p的后继 p->next=L->next;
L->next=p; // *p插入在头结点之后 p = q; } }
(8)设计一个算法,删除递增有序链表中值大于mink且小于maxk的所有元素(mink和maxk是给定的两个参数,其值可以和表中的元素相同,也可以不同 )。
[题目分析]
分别查找第一个值>mink的结点和第一个值 ≥maxk的结点,再修改指针,删除值大于mink且小于maxk的所有元素。
[算法描述]
void delete(LinkList &L, int mink, int maxk) { p=L->next; //首元结点 while (p && p->data<=mink)
{ pre=p; p=p->next; } //查找第一个值>mink的结点
精品
.
if (p)
{while (p && p->data
// 查找第一个值 ≥maxk的结点 q=pre->next; pre->next=p; // 修改指针 while (q!=p)
{ s=q->next; delete q; q=s; } // 释放结点空间 }//if }
(9)已知p指向双向循环链表中的一个结点,其结点结构为data、prior、next三个域,写出算法change(p),交换p所指向的结点和它的前缀结点的顺序。
[题目分析]
知道双向循环链表中的一个结点,与前驱交换涉及到四个结点(p结点,前驱结点,前驱的前驱结点,后继结点)六条链。
[算法描述]
void Exchange(LinkedList p)
∥p是双向循环链表中的一个结点,本算法将p所指结点与其前驱结点交换。 {q=p->llink;
q->llink->rlink=p; ∥p的前驱的前驱之后继为p p->llink=q->llink; ∥p的前驱指向其前驱的前驱。 q->rlink=p->rlink; ∥p的前驱的后继为p的后继。 q->llink=p; ∥p与其前驱交换
p->rlink->llink=q; ∥p的后继的前驱指向原p的前驱 p->rlink=q; ∥p的后继指向其原来的前驱 }∥算法exchange结束。
(10)已知长度为n的线性表A采用顺序存储结构,请写一时间复杂度为O(n)、空间复杂度为O(1)的算法,该算法删除线性表中所有值为item的数据元素。
[题目分析]
在顺序存储的线性表上删除元素,通常要涉及到一系列元素的移动(删第i个元素,第i+1至第n个元素要依次前移)。本题要求删除线性表中所有值为item的数据元素,并未要求元素间的相对位置不变。因此可以考虑设头尾两个指针(i=1,j=n),从两端向中间移动,凡遇到值item的数据元素时,直接将右端元素左移至值为item的数据元素位置。
[算法描述]
void Delete(ElemType A[ ],int n)
∥A是有n个元素的一维数组,本算法删除A中所有值为item的元素。 {i=1;j=n;∥设置数组低、高端指针(下标)。 while(i {while(i 精品 . if(i 精品 . 第3章 栈和队列 1.选择题 (1)若让元素1,2,3,4,5依次进栈,则出栈次序不可能出现在( )种情况。 A.5,4,3,2,1 B.2,1,5,4,3 C.4,3,1,2,5 D.2,3,5,4,1 答案:C 解释:栈是后进先出的线性表,不难发现C选项中元素1比元素2先出栈,违背了栈 的后进先出原则,所以不可能出现C选项所示的情况。 (2)若已知一个栈的入栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,…,pn,若p1=n,则pi为( )。 A.i B.n-i C.n-i+1 D.不确定 答案:C 解释:栈是后进先出的线性表,一个栈的入栈序列是1,2,3,…,n,而输出序列的 第一个元素为n,说明1,2,3,…,n一次性全部进栈,再进行输出,所以p1=n,p2=n-1,…,pi=n-i+1。 (3)数组Q[n]用来表示一个循环队列,f为当前队列头元素的前一位置,r为队尾元素的位置,假定队列中元素的个数小于n,计算队列中元素个数的公式为( )。 A.r-f B.(n+f-r)%n C.n+r-f D.(n+r-f)%n 答案:D 解释:对于非循环队列,尾指针和头指针的差值便是队列的长度,而对于循环队列, 差值可能为负数,所以需要将差值加上MAXSIZE(本题为n),然后与MAXSIZE(本题为n)求余,即(n+r-f)%n。 (4)链式栈结点为:(data,link),top指向栈顶.若想摘除栈顶结点,并将删除结点的值保存到x中,则应执行操作( )。 A.x=top->data;top=top->link; C.x=top;top=top->link; 答案:A 解释:x=top->data将结点的值保存到x中,top=top->link栈顶指针指向栈顶下一结 点,即摘除栈顶结点。 (5)设有一个递归算法如下 int fact(int n) { //n大于等于0 if(n<=0) return 1; else return n*fact(n-1); } 则计算fact(n)需要调用该函数的次数为( )。 A. n+1 B. n-1 C. n D. n+2 答案:A B.top=top->link;x=top->link; D.x=top->link; 精品