.15.平面内的两条直线有相交和平行两种位置关系
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
16.⑴在平面直角坐标系中,点A?x?1,2?x?在第一象限,则x的取值范围是 ;
1?⑵点???2,?在第二象限的角平分线上,则a?_____;
?a?9.若第三象限内的点P(x,y)满足|x|=3,y2=5,则点P的坐标是
1?2m?在第四象限,那么m的取值范围是( ) .⑶如果点P?m,A.0?m?
12 B.??m?0
12C.m?0 D.m?
C12⑷对任意实数x,点P(x,x2?2x)一定不在( ) ..A.第一象限
B.第二象限
C.第三象限
AD.第四象限
DB
21.如图,在△ABC中,AC?DC?DB,?ACD?100?,则?B等于
A.50? B.40? C.25? D.20?
22 如图,AB∥CD,AC?BC,?BAC?65?,则?BCD? 度.
ABCD
24.C岛在A岛的北偏东50°方向上,B岛在C岛的南偏西10°方向上,且A岛在B岛的西偏北20°方向上,求∠CAB的大小。
25.如图,已知EF平分?AEC,?DAC??AED,?ACB??CED,?DAB??BCD. DC求证:⑴AD∥BC;⑵AB∥CD.
F
B A
E
29.若方程(ax-y-2)2+∣6x+3∣=0的解互为相反数,则a的值为( ) A.0 B.1 C.5 D.-5
30.在y=ax2+bx+c中,当x=-1时, y=0;当x=2,时y=3;当x=5时, y=60,则当x=0时, y的值为( )
A.3 B.-2 C.-5 D.0
若|ab-2|与(b-2)的平方互为相反数,试求代数式1/ab+1/(a+1)(b+1)+……1/(a+2012)(b+2012
?2x?3(x?3)?1? 例3、关于x的不等式组?3x?2有四个整数解,则a的取值范围是
?x?a??4
17.(拓展提高)先阅读理解下面的例题,再完成(1)、(2)两题.
例:解不等式(3x?2)(2x?1)?0.
?3x?2?0,?3x?2?0,解:由有理数的乘法法则:两数相乘,同号得正,可得①?或②?解不等式组①,得
?2x?1?0;?2x?1?0.21,解不等式组②,得x??.
2321所以原不等式的解集为x?,或x??.
23x?(1)求不等式
x?1?0的解集; 2x?3
在“五?一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人. (1)请帮助旅行社设计租车方案.
(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?
(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?
十字形的路口,东西、南北方向的行人车辆来来往往,车水马龙.为了不让双方挤在一起,红绿灯就应动而生,一个方向先过,另一个方向再过.如在南稍门的十字路口,红灯绿灯的持续时间是不同的,红灯的时间总比绿灯长.即当东西方向的红灯亮时,南北方向的绿灯要经过若干秒后才亮.这样方可确保十字路口的交通安全.那么,如何根据实际情况设置红绿灯的时间差呢?
如图所示,假设十字路口是对称的,宽窄一致.设十字路口长为m米,宽为n米.当绿灯亮时最后一秒出来的骑车人A,不与另一方向绿灯亮时出来的机动车辆B相撞,即可保证交通安全.
根据调查,假设自行车速度为4m/s,机动车速度为8m/s.若红绿灯时间差为t秒.通过上述数据,请求出时间差t要满足什么条件时,才能使车人不相撞.当十字路口长约64米,宽约16米,路口实际时间差t=8s时,骑车人A与机动车B是否会发生交通事故?
4、某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
型号 A型 B型 成本(元/台) 2200 2600 售价(元/台) 2800 3000 (1)冰箱厂有哪几种生产方案? (2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、
洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、
办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.
3.某县政府打算用25 000元用于为某乡福利院购买每台价格为2 000元的彩电和每台价格为1 800元的冰箱,并计划恰好全部用完此款.
(1)问原计划所购买的彩电和冰箱各多少台;
(2)由于国家出台“家电下乡”惠农政策,该县政府购买的彩电和冰箱可获得13%的财政补贴,若在不增加县政府实际负担的情况下,能否多购买两台冰箱?谈谈你的想法.
40.(2008年襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?
4.某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3
分,负一场得-1分.
(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?
(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.