ÑγÇÊÐ2020ÄêְҵѧУ¶Ô¿Úµ¥ÕиßÈýÄê¼¶µÚ¶þ´Îµ÷Ñп¼ÊÔ ÊýѧÊÔ¾í(º¬´ð°¸) ÏÂÔØ±¾ÎÄ

1ÁªÁ¢¢Ù¢Ú½âµÃb1?,q?4¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­7·Ö

21(1?4n)1ËùÒÔ

Tn?2?(4n?1)1?4611nËùÒÔTn???4¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­10·Ö

6611nTn??46?6?4 ËùÒÔµ±n¡Ý2ʱ£¬

11n?1Tn?1??466ÓÖT1?1?122??£¬ËùÒÔÊýÁÐ?Tn??ÊÇÒÔΪÊ×Ï4Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ.¡­¡­12·Ö

6?633?ÀûÈó £¨Ôª£© 5¡Á40 3¡Á50 21. £¨±¾ÌâÂú·Ö10·Ö£©½â£º½«ÒÑÖªÊý¾ÝÁгÉϱí: ×°ÐÞ·Ñ Ãæ»ý ÏûºÄÁ¿ ÏîÄ¿ £¨Ôª£© £¨©O£© ·¿¼äÀàÐÍ ´ó·¿¼ä£¨¼ä£© С·¿¼ä£¨¼ä£© ÏÞ¶î 1000 600 8000 18 15 180 ÉèÓ¦¸ô³ö´ó¡¢Ð¡·¿¼ä·Ö±ðΪx,y¼ä£¬´ËʱÊÕÒæÎªzÔª£¬Ôò

54y ?18x?15y?180?65??3??3 ?1000x?600y?800013 ?C 5x?3y?40 12 ?(8,0)¡¢£¨0,13.3£© x?0??9 ?y?0 B maxz?200x?150y ½«ÉÏÊö²»µÈʽ×黯Ϊ

6 3 6x?5y?60 (10,0)¡¢£¨0,12£© ?6x?5y?60?5x?3y?40x A ?¡­¡­¡­¡­¡­4·Ö ?3 6 8 9 10 o x?0?l1l:4x?3y?0 ??y?0 ͼ¢Å

×÷³ö¿ÉÐÐÓò£¬Èçͼ¢Å£¬×÷Ö±Ïßl:200x+150y=0,¼´l:4x+3y=0. ½«Ö±ÏßlÏòÓÒÆ½ÒÆ£¬µÃµ½¾­¹ý¿ÉÐÐÓòµÄµãB£¬ÇÒ¾àÔ­µã×îÔ¶µÄÖ±Ïßl1. ½â·½³Ì×é

?6x?5y?60 ?5x?3y?40??x?207?2.9µÃ×îÓŽâ ?¡­¡­¡­¡­¡­6·Ö 60?y?7?8.6

µ«ÊÇ·¿¼äµÄ¼äÊýΪÕûÊý£¬ËùÒÔ£¬Ó¦ÕÒµ½ÊÇÕûÊýµÄ×îÓŽ⣮

¢Ù µ±x=3ʱ£¬´úÈë5x+3y=40ÖУ¬µÃy?40?153?253?8£¬µÃÕûµã£¨3£¬8£©£¬´Ëʱz=200¡Á3£«150¡Á8=1800£¨Ôª£©; ¢Ú µ±x=2ʱ,´úÈë6x+5y=60ÖУ¬µÃy?2£«150¡Á9=1750£¨Ôª£©£»

¢Û µ±x=1ʱ,´úÈë6x+5y=60ÖУ¬µÃy?60?6560?125?485?9£¬µÃÕûµã£¨2£¬9£©£¬´Ëʱz=200¡Á?545?10£¬µÃÕûµã£¨1£¬10£©,

´Ëʱz=200¡Á1£«150¡Á10=1700£¨Ôª£©£»

¢Ü µ±x=0ʱ,´úÈë6x+5y=60ÖУ¬µÃy?605?12£¬µÃÕûµã£¨0£¬12£©£¬´Ëʱz=150¡Á12=1800

£¨Ôª£©£®

ÓÉÉÏ¢Ù¡«¢ÜÖª£¬×îÓÅÕûÊý½âΪ£¨0£¬12£©ºÍ£¨3£¬8£©£® ¡­¡­¡­¡­¡­9·Ö

´ð£ºÓÐÁ½Ì×·Ö¸ô·¿¼äµÄ·½°¸£ºÆäÒ»Êǽ«Â¥·¿ÊÒÄÚÈ«²¿¸ô³öС·¿¼ä12¼ä£»Æä¶þÊǸô³ö´ó·¿¼ä3¼ä£¬Ð¡·¿¼ä8¼ä£¬Á½Ì×·½°¸¶¼ÄÜ»ñµÃ×î´óÊÕÒæÎª1800Ôª£® ¡­¡­¡­¡­¡­10·Ö 22. £¨±¾ÌâÂú·Ö12·Ö£©½â£º£¨1£©´ÓͼÖÐÐÅÏ¢¿ÉÖª£¬µ±0?t?0.1ʱ£¬Ò©Î↑ʼÊÍ·Å£¬ ´ËʱËù³Éº¯Êý¹ØÏµÊ½Îªy?kt

Q¹ý(0.1,1)£¬ ?k?10,?y?10t ¡­¡­¡­¡­¡­2·Ö

y µ±t?0.1ʱ£¬Ò©ÎïÊÍ·ÅÍê±Ï£¬´Ëʱy?(1t?a) 161 111t?10Q¹ýµã(0.1,1)£¬?a?£¬¹Êy?()¡­¡­¡­¡­¡­4·Ö

16100?t?0.1?10t£¬?¡­¡­¡­¡­¡­6·Ö ?y??1t?110£¨£©,t?0.1? ?16

O 0.1 t 11t?101?£¬?t?0.6¡­¡­¡­¡­¡­10 £¨2£©ÓÉy?0.25£¬ÔòÓÐ()164?ÖÁÉÙÐèÒª¾­¹ý0.6Сʱºó£¬Ñ§Éú²ÅÄܻص½½ÌÊÒ. ¡­¡­¡­¡­¡­12·Ö

x2y2623.½â£º£¨1£©ÓÉP(?2,)ÔÚÍÖÔ²C:2?2?1(a?b?0)ÉϵÃ

ab223??1 ¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¢Ù a22b2ÓÉAΪCµÄÓÒ¶¥µãBΪCµÄÉ϶¥µã¿ÉÖªA(a,0)£¬B(0,b) ÒòOP¡ÎAB£¬ËùÒÔkOP=kAB£¬Ôò?3b??¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¢Ú 2a3?2??122??a2b?a?2?ÁªÁ¢¢Ù¢ÚµÃ·½³Ì×é?£¬½âµÃ? b?33b???????a?2x2y2¹ÊËùÇóÍÖÔ²CµÄ·½³ÌΪ??1¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­4·Ö

43x2y2£¨2£©ÒòÍÖÔ²CµÄ·½³ÌΪ?£¬A£¨2,0£© ?1£¬ËùÒÔF£¨£­1,0£©

43µ±Ö±ÏßµÄбÂʲ»´æÔÚʱKAD£­KAB=£­1.

µ±Ö±ÏßµÄбÂÊ´æÔÚʱ£¬ÉèµÄ·½³ÌΪy=k(x+1)£¬ÉèD(x1,y1)£¬E(x2,y2),

?x2y2?1??ÁªÁ¢·½³Ì×é?4,ÏûÈ¥yµÃ(4k2+3)x2+8k2x+4k2£­12=0£¬ 3?y?k(x?1)??8k24k2?12¹Êx1?x2?2£¬x1x2?¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­7·Ö 24k+34k?3y1y2???2£¬ ÒòKAD£­kAB=£­2£¬Ôò

x1?2x2?2ÓÉy=k(x+1)µÃ

k(x1?1)k(x2?1)3k(x2?x1)???2£¬¼´¡­¡­¡­¡­10·Ö x1?2x2?2(x1?2)(x2?2)??212k2?13k?(?)23k(x2?x1)4k?3??2£¬??2£¬

x1x2?2(x1?x2)?44k2?1216k2??44k2?34k2?3»¯¼òµÃ?k2?1??2k£¬½âµÃk??3¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­¡­12·Ö 3ËùÒÔÖ±ÏßlµÄ·½³ÌΪy??

3(x?1)£¬¼´x?3y?1?0¡­¡­¡­¡­¡­¡­¡­¡­¡­14·Ö 3