2018年秋华师版数学八年级上教案全套精品 下载本文

2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。 3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

4.试一试。

在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。 5.练习。

如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

五、看谁做得又快又正确?

课本第34页练习的第一题。 六、课堂小结

这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题? 七、作业

补充习题

3、平行四边形的识别

教学目标

1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。

2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。

3.培养学生独立思考的习惯。 教学重点与难点

重点:探索平行四边形的识别方法。

难点:理解平行四边形的识别方法与应用。 教学准备方格纸、直尺、图钉、剪刀。 教学过程

一、提问。

1.平行四边形对边( ),对角( ),对角线( )。

2.( )是平行四边形。 二、探索,概括。 1.探索。

(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。

步骤1:画一线段AB。

步骤2:平移线段AD到BC。

步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。

(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180°后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。

根据上述的过程,能否断定这个四边形是平行四边形? 2.概括。

我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到∠_BAC=∠ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:

一组对边平行且相等的四边形是平行四边形。

(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。) 三、应用举例。

例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。 四、巩固练习。

如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行

四边形。

五、拓展延伸。

在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?

六、看谁做的既快又正确? 七、课堂小结。

这节课你有什么收获?学到了什么?还有什么疑问吗? 八、布置作业。 补充习题

12.2几种特殊的平行四边形

1、矩 形

教学目标

1.探索并掌握矩形的概念及其特殊的性质。 2.学会识别矩形。

3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力。 教学重点与难点

重点:矩形特殊特征与性质的探索过程。

难点:学生数学说理能力的培养。 教学准备

矩形纸张、剪刀、矩形纸板、四段木条做成的平行四边形的活动木框。 教学过程

一、提问。 1.平行四边形的特征:对边( ),对角( ),对角线( )。 2.如图,在平等四边形ABCD中,AE垂直于BC,E是垂足。如果AB=55°,那么∠AD与∠DAE分别等于多少度?为什么?

(让学生回忆平行四边形的特征与识别。) 二、引导观察。

如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?

可以发现,角的大小改变了,但不管如何,它仍然保持平行四边形的形状。

问题:我们若改变平行四边形的内角,使其一个内角恰好为直角,就能得到一个怎样的平行四边形?

(教师移动D点,使∠=90°,让学生观察。)

从而导人课题:矩形。 三、探索特征。 1.探索。

请你作矩形纸板的对角线,探索矩形有哪些特征,并填空。 (从边、角、对角线入手。)

(1)边:对边相等;(2)角:四个角都相等;(3)对角线:相等。 (学生通过自己的操作、观察、猜想,完全可以得到矩形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。) 2.请你折一折,观察并填空。

(1)矩形是不是中心对称图形? 对称中心是( ) 。

(2)是不是轴对称图形?对称轴有几条?( )。 四、应用举例。

1.例1 如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86厘