概率论与数理统计习题详细解答(第4章)徐雅静主编科学出版社 下载本文

=

1131E(X)???. 66240?x??,对X独立重复观察4次,

其他x?1?cos,2. 随机变量X的概率密度为f(x)??22?0,?用Y表示观察值大于

?的次数,求Y 2的数学期望 3解:依题意,Y~B(4, p),

????1xx1 p=P{X >}=f(x)dx?cosdx?sin???/3223??/32?/32所以E(Y)= 4p =2,D(Y)= 4p(1-p)=1, E(Y2) = D(Y)+[E(Y)]2=1+4=5

3. 设随机变量U在区间(-2,2)上服从均匀分布,随机变量

??1,若U??1??1,若U?1X??;Y??.

若U??1若U?1?1,?1,试求:(1)X和Y的联合分布律;(2)D(X?Y).

?1,?2?u?2 解:(1) fU(u)???4?其他?0,P{X =-1, Y =-1}= P{U ≤-1且U ≤1}= P{U ≤-1}=?P{X =-1, Y =1}= P{U ≤-1且U >1}= 0,

111P{X =1, Y =-1}= P{-1

?142P{X =1, Y =1}= P{U > -1且U >1}= P{U > 1}=?2111du?, ?244?111du?, 44所以X和Y的联合分布律为 X -1 Y -1 1 1/4 0 1 1/2 1/4 X pi Y – 1 1/4 – 1 1 3/4 1 (2) X和Y的边缘分布律分别为 pi 3/4 1/4 所以E(X)= -1/4+3/4=1/2,E(Y)= -3/4+1/4=-1/2,E(XY)= 1/4-1/2+1/4=0, E(X2)= 1/4+3/4=1,E(Y2)=1,D(X)=1-1/4=3/4,D(Y)=1-1/4=3/4, Cov(X,Y)=1/4,D(X+Y)= D(X)+ D(Y)+2 Cov(X,Y)=3/4+3/4+2/4=2

4. 设随机变量X的期望E(X)与方差D(X)存在,且有E(X)?a,D(X)?b(b?0),

Y?X?a,证明

E(Y)?0,D(Y)?1.

b证明:首先证明E(Y)存在

(1) 若随机变量X为离散型随机变量,分布律为:P{X?xi}?pi,i,?1,2,? 则由E(X)存在知,E(X)??xipi绝对收敛,且E(X)?a,

i?1?记Y?X?a?xi?a?1?g(X),则?g(xi)pi????p?i??bb?bi?1i?1????xpii?1?i?a绝对收敛,

b????所以E(Y)存在,E(Y)?E?X?a??0,D(Y)?D?X?a??D(X)?1 ????b?b??b?(2) 若X为连续型随机变量,其概率密度为f(x),则:

?由E?X?存在知则??????xf?x?d?x?绝对收敛。??X?a1???????f?x?d?x??xfxdx?af?x?d?x?????????????bb?1????xf?x?d?x??a???????b???1???因为?xf?x?d?x?绝对收敛,所以xf?x?d?x??a?绝对收敛?????????b

?X?a?11???E?X??a??0即E?Y?存在,且E?Y??E??EX?a????bb?b??X?a?11??D?Y??D??DX?a?D?X??1???bbb??5. 设离散型随机变量X的分布律为P{X?xk}?pk,(k?1,2,?),且E(X),E(X 2),D(X)都存在,试证明:函数f(x)??(xk?x)2pk在x?E(X)时取得最小值,且最小值为

k?1?D(X).

证明:令

??df(x)??2?(xk?x)pk?0, dxk?1?则??xkpk??xpk?0,

k?1k?1??xkpk?x?pk??E(X)?x?0,所以,x?E(X)

k?1k?1?d2f(x)又,所以时,x?E(X)?1?0f(x)??(xk?x)2pk取得最小值,此时 2dxk?1??f(E(X))??(xk?E(X))2pk?D(X)

k?1?

6. 随机变量X与Y独立同分布,且X的分布律为

X pi 1 2/3 2 1/3 记U?max(X,Y),V?min(X,Y), (1) 求(U,V)的分布律;

(2) 求U与V的协方差Cov(U,V). 解:(1) (X ,Y)的分布律 Y 1 X 1 2 (X ,Y) pij U V 2 2/9 1/9 (1,1) 4/9 1 1 2 0 1/9 (1,2) 2/9 2 1 (2,1) 2/9 2 1 (2,2) 1/9 2 2 4/9 2/9 V 1 U 1 2 4/9 4/9 (2) E(U)= 4/9+2×5/9=14/9,

E(V)= (4/9+2/9+2/9)+ 2×1/9=10/9, E(UV)= 4/9+2×4/9+4×1/9=16/9, Cov(U,V)=16/9-140/81=4/81 7. 随机变量X的概率密度为

?1/2,?1?x?0?fX(x)??1/4,0?x?2

?0,其它?令Y?X2,F(x,y)为二维随机变量(X,Y)的分布函数,求Cov(X,Y).

解:

E(X)??????xfx(x)dx??1/2xdx??1/4xdx?1/4?10??02???1002E(Y)?E(X2)??x2fx(x)dx??x2/2dx??x2/4dx?5/6E(XY)?E(X3)??????

x3fx(x)dx??x3/2dx??x3/4dx?7/8?1002则:Cov(X,Y)?E(X3)?E(X)E(X2)?7/8?(1/4)?(5/6)?2/3

8. 对于任意二事件A和B,0 < P(A) < 1,0 < P(B) < 1,??P(AB)?P(A)?P(B)

P(A)P(B)P(A)P(B)称作事件A和B的相关系数.

(1) 证明事件A和B独立的充分必要条件是其相关系数等于零. (2) 利用随机变量相关系数的基本性质,证明??1.

证明: (1) ?0?P?A??1 0?P?B??1

?P(A)P(B)P(A)P(B)?0 ,

??0?P?AB??P?A?P?B??0?P?AB??P?A?P?B?

即??0是事件A和B独立的充分必要条件 (2) 考虑随机变量X和Y

1,A出现1,B出现?? X=Y=??0, A不出现0, B不出现??X服从0-1分布:

X pi 0 1-P(A) 1 P(A) Y服从0-1分布:

X pi 0 1-P(B) 1 P(B) 可见, E?X??P?A?,E?Y??P?B?

D?X??EX2??E?X???P?A?P?A?

2??D?Y??EY2??E?Y???P?B?P?B?

2??Cov?X,Y??E?XY??E?X?E?Y??P?AB??P?A?P?B?

随机变量X和Y的相关系数?1?P(AB)?P(A)P(B)P(A)P(A)P(B)P(B)??

由两随机变量的相关系数的基本性质有

??1