D(X)= E(X)=
2
?2???xf(x)dx??x?12121?1?x2dxx?sintt?[??/2,?/2]???/2?/2sin2t
dt?cost1?cos2t1 dt???02218. 设随机变量(X,Y)具有D(X) = 9,D(Y) = 4,求D(X?Y), D(X?3Y?4).?XY??1/6,
??/2解:因为?XY?Cov(X,Y)D(X)D(Y),所以
Cov(X,Y)??XYD(X)D(Y)=-1/6×3×2=-1,
D(X?Y)?D(X)?D(Y)?2Cov(X,Y)?9?4?2?11
D(X?3Y?4)?D(X)?9D(Y)?2Cov(X,?3Y)?9?36?6(?1)?51
19. 在题13中求Cov(X,Y),?XY. 解:E(X) =1/2, E(Y) =3/4, E(XY)=0×(3/28+9/28+3/28+3/14+1/28)+1×3/14+2×0+4×0=3/14, E(X2)= 02×(3/28+9/28+3/28)+12×(3/14+3/14+0)+ 22×(1/28+0+0)=4/7, E(Y2)= 02×(3/28+3/14+1/28)+12×(9/28+3/14+0)+ 22×(3/28+0+0)=27/28, D(X)= E(X2) -[E(X)]2 = 4/7-(1/2)2= 9/28, D(Y)= E(Y2)- [E(Y)]2=27/28-(3/4)2= 45/112, Cov(X,Y)= E(XY)- E(X) E(Y) =3/14- (1/2) ×(3/4)= -9/56, ?XY = Cov(X,Y) /(D(X)D(Y))=-9/56 ? (9/2845/112)= -5/5
20. 在题14中求Cov(X,Y),?XY,D(X + Y).
222,Cov(X,Y)?E(XY)?E(X)E(Y)?? ,E(XY)?7551511?x1E(X2)???24x3ydydx??E(Y2)
005解:E(X)?E(Y)?D(X)?E(X2)?E(X)???2141???D(Y) 52525?XY?Cov(X,Y)2??3D(X)D(Y)275
D(X?Y)?D(X)?D(Y)?2Cov(X,Y)?21. 设二维随机变量(X, Y )的概率密度为
?1?,x2?y2?1,
f(x,y)????其它.?0试验证X和Y是不相关的,但X和Y不是相互独立的.
解:E(X)?11?x21???1?1?xx/?dydx??2x1?x2/?dx?0 2?1
11?x2E(Y)???1?1?x21?y/?dydx?0 xy/?dydx?0,
E(XY)???1?1?x2?1?x2所以Cov(X,Y)=0,?XY =0,即X和Y是不相关.
fX(x)???????21?x21?x2???,?1?x?1 f(x,y)dy????1?x21/?dy,?1?x?1????0,其他?0,其他???21?y21?y2?????,?1?y?1 fY(y)??f(x,y)dx????1?y21/?dx,?1?y?1???????0,其他0,其他??当x2 + y≤1时,f ( x,y)≠fX ( x) f Y(y),所以X和Y不是相互独立的
2
22. 设随机变量(X, Y )的概率密度为
?1/2,|y|?2x,0?x?1 f(x,y)??其它.?0验证X和Y是不相关的,但X和Y不是相互独立的.
解:由于f ( x,y)的非零区域为D: 0 < x < 1, | y |< 2x
yy?2x12E(X)???xf(x,y)dxdy???xdydx??2x2dx?,
0?2x23D012x1Oxy??2xE(Y)???yf(x,y)dxdy??D1ydydx?0,
0??2x212xE(XY)???xyf(x,y)dxdy??D1xydydx?0,所以Cov(X,Y)=0,从而
0??2x212x?xy?Cov(x,y)?0,因此X与Y不相关 .
D(x)D(y)?2x1???dy?2x,0?x?1
f(x,y)dy???2x2?0,其他?fX(x)????f1y?11dx??,?2?y?0???y2242???1y?1(y)??f(x,y)dx???y2dx??,0?y?2 Y??24?20,其他???所以,当0 四、应用题 .1. 某公司计划开发一种新产品市场,并试图确定该产品的产量,他们估计出售一件产品可获利m元,而积压一件产品导致n元的损失,再者,他们预测销售量Y(件)服从参数?的指数分布,问若要获利的数学期望最大,应该生产多少件产品?(设m,n,?均为已知). 解:设生产x件产品时,获利Q为销售量Y的函数 y ?mY?n(x?Y),0?Y?xQ?Q(Y)?? 0< y ?0,y?0? yy???x?? 11 E(Q)?Q(Y).fY(Y)dy?my?n(x?y)e?.dy?mx.e?dy??0x ??yyy ???xx????? ??0(m?n)yde?nx0de?xmxde yyyy?????x?xx? ??(m?n)ye?0?e??m?n?dy??nxe?0?mxe??x0? ? ??xyxx ????x???? ??(m?n)xe??m?n??e0?nxe?nx?mxex ?? ??(m?n)?e??m?n??nxxx ???dE(Q)1?令??(m?n)?e?????n?(m?n)e??n?0 dx??? x?nn 则e??,?x???lnm?nm?n x2?dE(Q)m?n 又??e??0dx? n ?当x???ln时,E(Q)取最大值 m?n ?????????2. 设卖报人每日的潜在卖报数为X服从参数为?的泊松分布,如果每日卖出一份报可获报酬m元,卖不掉而退回则每日赔偿n元,若每日卖报人买进r份报,求其期望所得及最佳卖报数。 解: 设真正卖报数为Y ,则 ?XY???rX?rX?r?k????e,k?r?k!,Y的分布为P?Y?k??? i???????i!e,k?r?i?r 设卖报所得为Z ,则Z 与Y 的关系为 ?my?n?r?y?Z?g?Y????mrrY?rY?rr?1 E?g?Y????g(k)P(Y?k)??g(k)P(Y?k)?g(r)P(Y?r)k?0k?0?r?1k?????i???????e??km??r?k?n?????e?mr?k?0k!??i?ri!??????k?m?n???ek!r?1k?0k???nr??ek!r?1k?0k???mr??ek!r?1k?0k????mr????k?0k!??ke?????? ??m?n????k?0k!r?2ke???nr??k?0k!r?1ke???mr当给定m,n,λ之后,求r,使得E(g(Y))达到最大. 用软件计算??100,m?10,n?0时 E?g?Y???100,此时r?150(B)组题 1. 已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品,从甲箱中任取3件产品放入乙箱后,求: (1) 乙箱中次品件数X的数学期望; (2) 从乙箱中任取一件产品是次品的概率. 解:(1) X的可能取值为0,1,2,3,X的概率分布律为 3?kC3kC3 P{X?k}?, k=0,1,2,3. 3C6即 X 0 1 2 3 pi 因此 E(X)?0?1991 2020202019913?1??2??3??. 202020202{X?2},{X?1},(2) 设A表示事件“从乙箱中任取一件产品是次品”,由于{X?0},{X?3}构成完备事件组,因此根据全概率公式,有 P(A)??P{X?k}P{AX?k} k?033k13 =?P{X?k}???kP{X?k} 66k?0k?0