µÚ4ÕÂϰÌâ´ð°¸
Èý¡¢½â´ðÌâ
1. ÉèËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉΪ X pi ÇóE(X)£¬E(X2)£¬E(3X?5)£®
½â£ºE (X ) =
¨C 2 0.4 0 0.3 2 0.3 ?xp
i?1
?
i
= ??2??0.4+0?0.3+2?0.3= -0.2
E (X ) =
2
?xi?1?2pi= 4?0.4+ 0?0.3+ 4?0.3= 2.8
E (3 X +5) =3 E (X ) +5 =3???0.2?+5 = 4.4
2. ͬʱÖÀ°Ë¿Å÷»×Ó£¬Çó°Ë¿Å÷»×ÓËùÖÀ³öµÄµãÊýºÍµÄÊýѧÆÚÍû£® ½â£º¼ÇÖÀ1¿Å÷»×ÓËùÖÀ³öµÄµãÊýΪXi£¬ÔòXi µÄ·Ö²¼ÂÉΪ
P{X?i}?1/6,i?1,2,?,6
¼ÇÖÀ8¿Å÷»×ÓËùÖÀ³öµÄµãÊýΪX £¬Í¬Ê±ÖÀ8¿Å÷»×Ó£¬Ï൱ÓÚ×÷ÁË8´Î¶ÀÁ¢Öظ´µÄÊÔÑ飬 E (Xi ) =1/6¡Á(1+2+3+4+5+6)=21/6 E (X ) =8¡Á21/3=28
3. ijͼÊé¹ÝµÄ¶ÁÕß½èÔļ×ÖÖͼÊéµÄ¸ÅÂÊΪp1£¬½èÔÄÒÒÖÖͼÊéµÄ¸ÅÂÊΪp2£¬ÉèÿÈ˽èÔļ×ÒÒͼÊéµÄÐÐΪÏ໥¶ÀÁ¢£¬¶ÁÕßÖ®¼äµÄÐÐΪҲÊÇÏ໥¶ÀÁ¢µÄ£® (1) ijÌìÇ¡ÓÐn¸ö¶ÁÕߣ¬Çó½èÔļ×ÖÖͼÊéµÄÈËÊýµÄÊýѧÆÚÍû£®
(2) ijÌìÇ¡ÓÐn¸ö¶ÁÕߣ¬Çó¼×ÒÒÁ½ÖÖͼÊéÖÁÉÙ½èÔÄÒ»ÖÖµÄÈËÊýµÄÊýѧÆÚÍû£® ½â£º(1) Éè½èÔļ×ÖÖͼÊéµÄÈËÊýΪX £¬ÔòX~B(n, p1),ËùÒÔE (X )= n p1 (2) Éè¼×ÒÒÁ½ÖÖͼÊéÖÁÉÙ½èÔÄÒ»ÖÖµÄÈËÊýΪY , ÔòY ~B(n, p),
¼ÇA ={½è¼×ÖÖͼÊé}£¬ B ={½èÒÒÖÖͼÊé}£¬Ôòp =£ûA ¡È B£ý= p1+ p2 - p1 p2 ËùÒÔE (Y )= n (p1+ p2 - p1 p2 )
4. ½«n¸ö¿¼ÉúµÄµÄ¼ȡ֪ͨÊé·Ö±ð×°Èën¸öÐŷ⣬ÔÚÿ¸öÐÅ·âÉÏÈÎÒâдÉÏÒ»¸ö¿¼ÉúµÄÐÕÃû¡¢µØÖ··¢³ö£¬ÓÃX±íʾn¸ö¿¼ÉúÖÐÊÕµ½×Ô¼ºÍ¨ÖªÊéµÄÈËÊý£¬ÇóE(X)£®
½â£ºÒÀÌâÒ⣬X~B(n£¬1/n)£¬ËùÒÔE (X ) =1.
5. ÉèX~P(?)£¬ÇÒP{X?5}?P{X?6}£¬ÇóE(X)£®
½â£ºÓÉÌâÒâÖªX¡«P£¨?£©£¬ÔòXµÄ·Ö²¼ÂÉP
?X?k?=
?kk!e??£¬k = 1,2,...
ÓÖP?X?5?=P?X?6?, ËùÒÔ
?55!e????66!e??
½âµÃ ??6£¬ËùÒÔE(X) = 6.
6. ÉèËæ»ú±äÁ¿XµÄ·Ö²¼ÂÉΪP{X?k}?ÔÚ£¿
½â£ºÒòΪ¼¶Êý?((?1)k?1k?k?1???66k?16)?((?1))???2k2?2k?2k?16,k?1,?2,3,?4,?,ÎÊXµÄÊýѧÆÚÍûÊÇ·ñ´æ22?k?(?1)k?1k?1?1£¬ ¶ø k?k·¢É¢£¬ËùÒÔXµÄÊýѧÆÚÍû²»´æÔÚ.
k?117. ij³ÇÊÐÒ»ÌìµÄÓõçÁ¿X£¨Ê®Íò¶È¼Æ£©ÊÇÒ»¸öËæ»ú±äÁ¿£¬Æä¸ÅÂÊÃܶÈΪ
?1?x/3?xe,x?0, f(x)??9?ÆäËü.?0ÇóÒ»ÌìµÄƽ¾ùºÄµçÁ¿£®
1?x/31?2?x/3xedx??xedx=6.
??0990 8. ÉèijÖÖ¼ÒµçµÄÊÙÃüX£¨ÒÔÄê¼Æ£©ÊÇÒ»¸öËæ»ú±äÁ¿£¬Æä·Ö²¼º¯ÊýΪ
½â£ºE(X) =?xf(x)dx??x???25?1?,x?5,
F(x)??x2?ÆäËü.?0ÇóÕâÖÖ¼ÒµçµÄƽ¾ùÊÙÃüE(X)£®
½â£ºÓÉÌâÒâÖª£¬Ëæ»ú±äÁ¿XµÄ¸ÅÂÊÃܶÈΪf(x)?F?(x)
?2?2550?3£¬µ±x?5ʱ£¬f(x)?0. 3xx????5050??|5?10 E(X) =?xf(x)dx??x3dx??-?5xx µ±x>5ʱ£¬f(x)? ?ËùÒÔÕâÖÖ¼ÒµçµÄƽ¾ùÊÙÃüE(X)=10Äê.
9. ÔÚÖÆ×÷ijÖÖʳƷʱ£¬Ãæ·ÛËùÕ¼µÄ±ÈÀýXµÄ¸ÅÂÊÃܶÈΪ
?42x(1?x)5,0?x?1, f(x)??0ÆäËü.?ÇóXµÄÊýѧÆÚÍûE(X)£®
½â£ºE(X) =
??1?-?xf(x)dx??42x2(1?x)5dx=1/4
0 10. ÉèËæ»ú±äÁ¿XµÄ¸ÅÂÊÃܶÈÈçÏ£¬ÇóE(X)£®
?32?2(1?x)£¬?1?x?0£¬??3f(x)??(1?x)2,0?x?1£¬
?20£¬ÆäËü.?????031322½â£ºE(X)??xf(x)dx??x(1?x)dx??x(1?x)dx?0.
???1202
11. ÉèX~B(4,p)£¬ÇóÊýѧÆÚÍûE(sin?X£® )2kk½â£ºXµÄ·Ö²¼ÂÉΪP{X?k}?Cnp(1?p)n?k£¬ k = 0£¬1£¬2£¬3£¬4£¬
XȡֵΪ0£¬1£¬2£¬3£¬4ʱ£¬sin?XÏàÓ¦µÄȡֵΪ0£¬1£¬0£¬-1£¬0£¬ËùÒÔ
2E(sin?X21133)?1?C4p(1?p)3?1?C4p(1?p)1?4p(1?p)(1?2p)
W?kV£¬ 12. Éè·çËÙVÔÚ(0£¬a)ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬·É»ú»úÒíÊܵ½µÄÕýѹÁ¦WÊÇVµÄº¯Êý£º
£¨k > 0£¬³£Êý£©£¬ÇóWµÄÊýѧÆÚÍû£®
2?1, 0?v?aa½â£ºVµÄ·Ö²¼ÂÉΪf(v)??£¬ËùÒÔ ??0, ÆäËü???a11k1aE(W)??kv2f(v)dx??kv2dv?(v3)|0?ka2
??0aa3313. ÉèËæ»ú±äÁ¿(X, Y )µÄ·Ö²¼ÂÉΪ Y X 0 1 2 0 3/28 3/14 1/28 1 9/28 3/14 0 2 3/28 0 0 ÇóE(X)£¬E(Y )£¬E(X ¨C Y )£®
½â£ºE(X)=0¡Á(3/28+9/28+3/28£©+1¡Á(3/14+3/14+0)+ 2¡Á(1/28+0+0)= 7/14=1/2 E(Y)=0¡Á£¨3/28+3/14+1/28£©+1¡Á(9/28+3/14+0)+ 2¡Á(3/28+0+0)=21/28=3/4 E(X-Y) = E(X)- E(Y)=1/2-3/4= -1/4.
?24xy,0?x?1,0?y?1,x?y?114. ÉèËæ»ú±äÁ¿(X£¬Y)¾ßÓиÅÂÊÃܶÈf(x,y)??£¬Çó
ÆäËü?0,E(X)£¬E(Y)£¬E(XY)
½â£ºE(X)=
2x?24xydxdy?24x????ydydx D0011?xyy??x?11122212??24x?(1?x)dx??(12x2?24x3?x4)dx?(4x3?6x4?x5)? 00255011x
E(Y)???y?24xydxdy??24y2?xdxdy?2/5D0011?y
E(XY)???xy?24xydxdy??24xD012?1?x011ydydx??24x2?(1?x)3dx
032182442?(x3?6x4?x5?x6)?.353150 15. ij¹¤³§Íê³ÉijÅú²úÆ·Éú²úµÄÌìÊýXÊÇÒ»¸öËæ»ú±äÁ¿£¬¾ßÓзֲ¼ÂÉ X 10 11 12 13 14 pi 0.2 0.3 0.3 0.1 0.1 ËùµÃÀûÈó£¨ÒÔÔª¼Æ£©ÎªY?1000(12?X),ÇóE(Y)£¬D(Y)£®
½â£º E(Y) = E£Û1000(12-X)£Ý
=1000¡Á[(12-10)¡Á0.2+(12-11)]¡Á0.3+(12-12)¡Á0.3+(12-13)¡Á0.1+(12-14)¡Á0.1] = 400
E(Y2) = E£Û10002(12-X)2£Ý
=10002[(12-10)2¡Á0.2+£¨12-11£©2¡Á0.3+£¨12-12£©2¡Á0.3+£¨12-13£©2¡Á0.1 +£¨12-14£©2¡Á0.1]=1.6¡Á106
D(Y)=E(Y2)-£ÛE(Y)£Ý2=1.6¡Á106- 4002=1.44¡Á106
16. ÉèËæ»ú±äÁ¿X·þ´Ó¼¸ºÎ·Ö²¼ £¬Æä·Ö²¼ÂÉΪP{X?k}?(1?p)k?1p,k?1,2,?, ÆäÖÐ0 < p < 1Êdz£Êý£¬ÇóE(X)£¬D(X)£®
½â£ºÁîq=1- p ,Ôò
E(X)??(k?P{X?k})??(k?qk?1k?1??k?1p)?p?k?qk?1?k?1dqk?p?k?1dq?
d?kd1?p?q?p()?1/p
dqk?0dq1?qE(X)??(k?P{X?k})??(k?q222k?1k?1??k?1p)?p[?k(k?1)?qk?1?k?1??k?qk?1]
k?1??pq?k(k?1)?qk?1?k?2d2kd2?1/p?pq?2q?1/p?pq(2dqk?0dq??qk?1?k)?1/p
d212?pq2()?1/p?pq?1/p?2q/p2?1/p 3dq1?q(1?q)D(X) = E(X2)- E(X) =2q/p2+1/p-1/p2 = (1-p)/p2
1?,|x|?1?17. ÉèËæ»ú±äÁ¿XµÄ¸ÅÂÊÃܶÈΪf(x)???1?x2£¬ÊÔÇóE(X)£¬D(X)£®
?0,ÆäËü?½â£ºE(X)=
????xf(x)dx??x?111?1?x2dx?0