光存储技术的现状及发展趋势 下载本文

(3)光学头物镜的数值孔径增大; (4)激光器波长更短; (5)采用更有效的编码方案。

沿着这一发展方向,2002年2月19日,光存储领域的9家知名公司在日本东京宣告建立下一代大容量光盘记录格式的参数标准,并将其命名为蓝光光盘(Blue-Ray Disc)。蓝光光盘的记录介质采用相变材料,为可擦写光盘。通过405nm波长的蓝紫光激光器发出激光,利用0.85数值孔径的光学头,它成功地缩小了聚焦光斑。利用0.lmm厚度的光学保护层,可降低盘片抖晃所产生的偏差,同时使盘片能更好地读出和提高记录密度。蓝光光盘的轨道间距为0.32μm,大约是DVD光盘的1/2,从而获得了单盘单面27GB的存储量,以及36Mbit/s的传输速度。

由于蓝光光盘采用了全球标准的“MPEG-2”传输流压缩技术,使其适用于存储高清晰度视频信息等需要大容量的内容。与DVD的技术发展类似,蓝光技术的发展也充满了激烈的竞争。HDVD是可以与蓝光光盘争雄的另一种基于蓝光的新一代高密度高速度光盘系列。

DVD、蓝光光盘代表了高密度光存储的主流发展技术,其主要特点是采取缩短激光的波长和增大物镜数值孔径的技术,但是这一技术发展至今所剩的空间已经不大,因此有必要寻求其他提高存储密度和数据速率的途径。例如,利用空间三维或光的频率维进行信息存储,采用多阶存储代替目前的二阶存储,采用近场超分辨力技术取代传统的远场技术等。

3.1 三维体存储技术

三维体存储是实现超高密度信息存储的重要途径 , 研究领域主要集中在体全息存储和光子三维存储两个方面。 3.1.1 体全息存储

体全息存储是20世纪60年代随着光全息技术的发展而出现的一种大容量高存储密度的存储方式。随着计算机产业的迅速发展,也由于在光电器件和全息存储材料领域的研究取得了突破,使得人们在全息存储领域获得了巨大的进展,从 而也使全息存储成为超高密度光存储领域的研究热点。

一般光学体全息数据存储机理为:待存储的数据(数字或模拟)经空间光调制器(SLM)被调制到信号光上,形成一个二维信息页,然后与参考光在记录介质中干涉形成体全息图从而完成信息的记录读出时使用和原来相同的参考光寻址,可以读出相应地存储在晶体中的全息图。利用体全息图的布拉格选择性,改变参考光的入射角度或波长,就可在一个单位体积内复用多幅图像,实现多重存储,达到超高密度存储的目的[7]。

全息存储具有以下特点:

(1)存储密度高、容量大:在可见光谱中存储密度可达1012bits/cm3[8]; (2)数据冗余度高:全息记录是分布式的,存储介质的缺陷和损伤只会使所有信号的强度降低,而不致于引起数据丢失;

(3)数据传输速率高:信息以页为单位,并行读写,从而达到极高的数据传输率。目前采用多通道并行探测阵列的全息存储系统,数据传输率有望达到1Gbyte/s;

(4)寻址速度快:参考光可采用声光、电光等非机械式寻址方式,数据访问时间可降至亚毫秒范围或者更低;

(5)存储寿命长:存储介质记录的信息可以保持30年以上。

体全息存储的研制目标是实现TB量级的存储容量和1Gbps的数据传输率,美国的Inphase公司和日本的Optware公司已经取得了令人瞩目的成就,而且在商品化进程中取得了很大的进展 。同时,体全息存储发展也存在着很多的难题 , 主要就是寻找一种同时兼具性能、容量和价格方面综合优势的存储材料。 3.1.2 光子三维存储

存储材料中的激活中心,在光激发下使电子产生跃迁而达到光存储的目的,称光子存储( photo induced optical memory)。它是一种不经过材料吸收光子后产生热效应阶段而形成的光存储,区别于目前一般应用的光热存储方式。主要研究包括光谱烧孔存储和双光子吸收三维存储。

1、光谱烧孔存储

固体机制中的掺杂分子由于局域环境的差异出现能级的非均匀加宽。当用窄频带激光照射后,在掺杂分子吸收带内,在激光频率处出现吸收的减小,这种现象称为光谱烧孔。该烧孔可以用相同频率的激光读出。由于可通过改变激光频率在吸收带内烧出多个孔,即利用频率维变量来记录信息,从而可以在一个光斑存储多个信息。

光谱烧孔包括单光子光谱烧孔和双光子光谱烧孔。两类材料的光子选通烧孔均在低温下进行,由于目前材料的电子俘获陷阱深度较浅,导致烧孔的孔深也较浅,而且在序列烧孔过程中,先烧出的孔容易出现逐渐被填充的现象,因而寻找室温下能烧孔的材料是关键。目前,国内外主要研究两类材料体系:Sm离子掺杂的无机材料体系以及给体和受体电子转移反应的有机材料体系[9]。

2、双光子吸收三维存储

双光子吸收三维记录的基本原理是:两种光子同时作用于某种介质时,能使介质的原子中某一特定能级上的电子激发至另一稳态,并使其光学性能发生变化,若使两个光束从两个方向聚焦至材料的空间同一点时,便可实现三维空间的

寻址与读写。利用材料折射率、吸收度、荧光或电性质的改变来实现存储[10],能实现T bits/cm3的体密度,可达到4MB/s的传输率。国际上最有代表性的是美国加州大学San Diego分校及Call&Recall公司100层的记录方法。国内清华大学从1995年开始从事这方面的研究,初步建立了针对有机介质的记录物理模型并完成了对双光子记录介质特性测试专用设备的研制。

双光子吸收三维存储原理基于能级的跃迁,材料的响应时间可达到皮秒量级,能够实现高密度体存储,理论上的分辨率可达到分子尺度。但由于大多数材料的双光子吸收截面很小限制了其应用,因而要使双光子三维存储走向实用化, 就必须开展对存储材料的研究。

3.2 多阶光存储技术[11]

多阶光存储是目前国内外光存储研究的重点之一[12],缘于它可以大大地提高存储容量和数据传输率。在传统的光存储系统中,二元数据序列存储在记录介质中,记录符只有两种不同的物理状态,例如只读光盘中交替变化的坑岸形貌。如将数据流调制成M进制数据(M>2),令调制后的数据与记录介质的M种不同物理状态相对应,即可实现M阶存储。如图2所示的坑深调制多阶存储,就是通过改变信息符的深度来实现多值存储,数据流经调制转换成盘基多种不同坑深的变化,即可实现多阶坑深存储[13]。多阶光存储分为信号多阶光存储和介质多阶光存储。

图2 坑深调制实现多值存储

3.2.1 信号多阶光存储

其早期方案是坑深调制(PDM:Pit Depth Modulation)。在这种多阶只读光盘中,信息坑的宽度固定为t min,信息坑的深度具有M种不同的可能,代表着不同的阶次。不同深度的信息坑,其读出光呈现不同光强,从而实现多阶坑深调制。Sony公司研发的是利用信息坑边沿相对于固定时钟的变化,进行多阶信息存储,即利用信息坑长度的变化实现多阶光存储。信息坑的起始和结束边沿相对

于时钟边沿都可以按一定的步长变化。若信息坑的起始和结束边沿的可能位置数均为 8,那么一个信息坑的边沿变化可能出现64种状态,信息坑可存储6比特(byte)的信息,因此显著高于传统光盘的记录密度。 3.2.2 介质多阶光存储

有多种介质可以用来实现多阶光存储。在电子俘获多阶技术中的光盘的记录层中掺杂有两种稀土元素,当第一种掺杂离子吸收短波长激光的光子后,其电子被激发到高能级状态,该电子可能被第二种掺杂离子“俘获”,实现数据的写入。用另一长波长激光( 例如红光) 将俘获的电子释放到原来的低能级状态,存储 的能量以荧光的形式释放出来,由于发出的荧光强度与俘获的电子数量成比例,同时也与写入激光的强度成比例,该写入/读出过程具有线性响应,使得电子俘获材料适用于数字光存储。电子俘获光存储的反应速度快,可以实现ns时间的读写。

此外,通过调整退火时间和温度,控制相变材料的结晶程度,也可以实现多阶反射调制存储。

3.3 近场光学存储技术

传统光驱使用包含物镜的光学头进行写、读、擦操作,由于物镜距盘片记录层多为几个毫米,属于远场光存储方式,光无法聚焦成直径小于半波长的点,存储密度受到了限制。近场光学存储采用的是近场光,它是由记录介质与光源在小于半波长量级 的距离时获得的隐失光。隐失光为非传输光,当距离超过波长量级时迅速衰减到接近于零。近场光学存储的基本原理就是通过亚波长尺寸的光学头和亚波长尺寸的距离控制,实现亚波长尺寸的光点记录。只要将光学存储介质放在近场光学显微镜中,保持光学探针与存储介质的距离在近场范围内,则在存储介质中形成的记录点尺寸就可能在亚波长量级内,从而克服衍射极限,实现高密度存储。与其它超高密度存储方法相比,近场光学存储主要有以下优点:

(1)高密度、大容量:读写光斑小,大大提高了存储的密度,使得存储容量有了很大提高。随着近场光存储技术的进一步完善,还可以获得比较高的数据传输速率;

(2)可充分利用已有存储技术:如硬盘驱动器中的空气悬浮磁头技术和光 盘存储中的光头飞行技术,而不必另外再去进行新的系统设计与开发,因而有助于减低产品的价格,增加竞争优势。

目前建立的已能够进行存取数据操作的实验系统可分为3种:①固体浸没透镜(SIL)近场存储;②超分辨率近场结构(Super-RENS)存储;③探针扫描显微术(PSM)近场存储。这三种方法都是通过不同方法缩小记录光斑来提高存储密度。结构见图3。近场存储的优势明显,有美好的发展前景,但目前仍被如何