µÚÒ»ÕÂ ÆøÌåµÄpVTÐÔÖÊ
Ò»¡¢Ñ¡ÔñÌâ
1.ÔÚζȺ㶨Ϊ25¡æ£¬Ìå»ýºã¶¨Îª25dm3µÄÈÝÆ÷ÖУ¬º¬ÓÐ0.65molµÄÀíÏëÆøÌåA£¬0.35molµÄÀíÏëÆøÌåB¡£ÈôÏòÈÝÆ÷ÖÐÔÙ¼ÓÈë0.4molµÄÀíÏëÆøÌåD£¬ÔòBµÄ·ÖѹÁ¦pB£¨ £©£¬·ÖÌå»ýVB*£¨ £©¡£
(A)±ä´ó£»(B)±äС£»(C)²»±ä£»(D)ÎÞ·¨È·¶¨
2.ÓÉA(g)ºÍB(g)ÐγɵÄÀíÏëÆøÌå»ìºÏϵͳ,×Üѹp=pA+pB,,V=VA*+VB*£¬n=nA+nB£¬ÏÂÁи÷ʽÖУ¬Ö»ÓÐʽ£¨ £©ÊÇÕýÈ·µÄ
(A) pBVB*=nBRT£»(B) pVA*=nRT£»(C) pBV=nBRT£»(D) pAVA*=nART
3.(1)ÔÚÒ»¶¨µÄT,PÏÂ(¼ÙÉè¸ßÓÚ²¨Òå¶ûζÈTB)£ºVm(ÕæÊµÆøÌå)£¨ £©Vm (ÀíÏëÆøÌå)£»(2) ÔÚn£¬T£¬V½ÔΪ¶¨ÖµµÄÌõ¼þÏÂp£¨·¶µÂ»ªÆøÌ壩£¨ £©p£¨ÀíÏëÆøÌ壩£» (3) ÔÚÁÙ½ç״̬Ï£¬·¶µÂ»ªÆøÌåµÄµÄѹËõÒò×ÓZC£¨ £©£±
(A)£¾£»(B)£½£»(C)£¼£»(D)²»ÄÜÈ·¶¨
£´.ÒÑÖª£Á(g)ºÍB(g)µÄÁÙ½çζÈÖ®¼äµÄ¹ØÏµÎª:Tc(A)>Tc(B);ÁÙ½çѹÁ¦Ö®¼äµÄ¹ØÏµÎª:pc (A) (A)£¾£»(B)<£»(C)=£»(D)²»ÄÜÈ·¶¨ 5.ÔÚÒ»¸öÃܱյÄÈÝÆ÷ÖзÅÓÐ×ã¹»¶àµÄij´¿ÒºÌ¬ÎïÖÊ,ÔÚÏ൱´óµÄζȷ¶Î§ÄÚ½Ô´æÔÚÆø¡¢ÒºÁ½ÏàÆ½ºâ¡£µ±Î¶ÈÖð½¥Éý¸ßʱҺÌåµÄ±¥ºÍÕôÆøÑ¹p*( ),±¥ºÍÒºÌåµÄĦ¶ûÌå»ý Vm (l)( );±¥ºÍÕôÆøµÄĦ¶ûÌå»ýVm (g)( );¡÷V=Vm(g)-Vm(l) (A)±äС;(B) ±ä´ó ;(C) ²»±ä; (D)ÎÞÒ»¶¨±ä»¯¹æÂÉ 6.ÔÚt=-50¡æ,V=40dm3µÄ¸ÖÆ¿ÄÚ´¿ÇâÆøµÄѹÁ¦p=12.16¡Á106Pa,ÒÑÖªÇâÆøµÄÁÙ½çζÈΪ-239.9¡æ,´Ëʱ¸ÖÆ¿ÄÚÇâÆøµÄÏà̬±ØÈ»ÊÇ( )¡£ (A)ÆøÌ¬; (B)Һ̬ ; (C) ¹Ì̬; (D)ÎÞ·¨È·¶¨ 7.ÔÚζȺ㶨Ϊ373.15K£¬Ìå»ýΪ2.0dm3µÄÈÝÆ÷Öк¬ÓÐ0.035molË®ÕôÆøH2O£¨g£©¡£ÈôÏòÉÏÊöÈÝÆ÷ÖÐÔÙ¼ÓÈë0.025molH2O£¨l£©¡£ÔòÈÝÆ÷ÖеÄH2O±ØÈ»ÊÇ£¨ £©¡£ (A)ÆøÌ¬; (B)Һ̬ ; (C)Æø-ÒºÁ½ÏàÆ½ºâ; (D)ÎÞ·¨È·¶¨ÆäÏà̬ 8.Ä³ÕæÊµÆøÌåµÄѹËõÒò×ÓZ<1,Ôò±íʾ¸ÃÆøÌå( )¡£ (A)Ò×±»Ñ¹Ëõ; (B)Äѱ»Ñ¹Ëõ; (C)Ò×Òº»¯; (D)ÄÑÒº»¯ ¶þ¡¢Ìî¿ÕÌâ 1.ζÈΪ400K£¬Ìå»ýΪ2m3µÄÈÝÆ÷ÖÐ×°ÓÐ2molµÄÀíÏëÆøÌåAºÍ8molµÄÀíÏëÆøÌåB¡£¸Ã»ìºÏÆøÌåÖÐBµÄ·ÖѹÁ¦Îª£¨ £©¡£ 2.ÔÚ300K¡¢100kPaÏ£¬Ä³ÀíÏëÆøÌåÃܶÈΪ80.8275kg/m3¡£Ôò¸ÃÆøÌåµÄĦ¶ûÖÊÁ¿Îª£¨ £©¡£ 3.ºãÎÂ100¡æ£¬ÔÚÒ»¸ö´øÓлîÈûµÄÆø¸×ÖÐÓÐ3.5molµÄË®ÕôÆøH2O(g)£¬ÔÚÆ½ºâÌõ¼þÏ£¬»ºÂýµÄѹËõµ½Ñ¹Á¦p=( )kPaʱ£¬²ÅÄÜÓÐË®µÎH2O(l)³öÏÖ¡£ 4.ÀíÏëÆøÌåÔÚºãÎÂÏÂ,Ħ¶ûÌå»ýËæÑ¹Á¦µÄ±ä»¯ÂÊΪ( )¡£ 5.Ò»¶¨Á¿µÄ·¶µÂ»ªÆøÌ壬ÔÚºãÈÝÌõ¼þÏ£¬Ñ¹Á¦ËæÎ¶ȵ±仯ÂÊΪ£¨ £©¡£ 6.ÀíÏëÆøÌåÔÚ΢¹ÛÉϵÄÌØÕ÷Ϊ£¨ £©¡£ 7.ÔÚÁÙ½ç״̬Ï£¬ÈκÎÕæÊµÆøÌåÔÚºê¹ÛÉϵÄÌØÕ÷ÊÇ£¨ £©¡£ 8.ÔÚn£¬TÒ»¶¨µÄÌõ¼þÏ£¬ÈκÎÖÖÀàµÄÆøÌ壬µ±Ñ¹Á¦Ç÷½üÓÚÁãʱ£ºlim?pV??( )¡£ p?09.Ä³ÕæÊµÆøÌåµÄѹËõÒò×ÓZ>1,Ôò±íʾ¸ÃÆøÌå( )ѹËõ¡££¨ÌÒ×»òÄÑ£© Èý¡¢ÅжÏÌâ 1. ÀíÏëÆøÌå·Ö×Ӽ䴿ÔÚÏ໥×÷ÓÃÁ¦¡££¨ £© 2. Èôʵ¼ÊÆøÌåµÄѹËõÒò×ÓZ<1£¬Ôò¸ÃÆøÌå±ÈÀíÏëÆøÌåÈÝÒ×ѹËõ¡££¨ £© 3. ʵ¼ÊÆøÌåÔÚÈκÎζÈϼÓѹ¶¼¿ÉÒº»¯¡££¨ £© 4. ÔÚÈκÎζȡ¢ÈκÎѹÁ¦ÏÂÀíÏëÆøÌå¾ù²»ÄÜÒº»¯¡££¨ £© 5. ²»Í¬ÎïÖÊÔÚÏàͬµÄζÈϵı¥ºÍÕôÆûѹÊýÖµ²»Í¬¡££¨ £© 6. ͬһÎïÖÊÔÚ²»Í¬µÄζÈϱ¥ºÍÕôÆûѹÊýÖµ²»Í¬¡££¨ £© 7. Èôʵ¼ÊÆøÌåµÄѹËõÒò×ÓZ>1£¬Ôò¸ÃÆøÌå±ÈÀíÏëÆøÌåÄÑÓÚѹËõ¡££¨ £© Ñ¡ÔñÌâ´ð°¸£º 1.C£¬B£»2.C; 3. A£¬C£»C; 4.A, A; 5 .B,B,A,A; 6.A£»7.A£»8.A Ìî¿ÕÌâ´ð°¸£º 1. 13.303kPa£»2. 2.016 g/mol£»3. p=( 101.325 )kPa£»4. ???Vm?RT£»???2p??p?T5.?nR??p? £»6.·Ö×ÓÖ®¼äÎÞÏ໥×÷ÓÃÁ¦£»·Ö×Ó±¾ÉíÎÞÌå»ý£»7. ÆøÏàºÍÒºÏ಻???TV?nb??V·Ö£»8.nRT£»9.ÄÑѹËõ. ÅжÏÌâ´ð°¸£º 1.(¡Á),2.( ¡Ì),3.( ¡Á),4.( ¡Ì),5.( ¡Ì), 6.( ¡Ì), 7.( ¡Ì) µÚ¶þÕ ÈÈÁ¦Ñ§µÚÒ»¶¨ÂÉ Ò»¡¢Ñ¡ÔñÌâ 1. ÀíÏëÆøÌ嶨ÎÂ×ÔÓÉÅòÕ͹ý³ÌΪ£¨ £© (A) Q>0 (B) ?U<0 (C) W<0 (D) ? H=0 ?2. ÒÑÖª·´Ó¦H2 (g)+(1/2)O2 (g)= H2O(g)µÄ±ê׼Ħ¶ûìÊ[±ä]Ϊ?rHm?T?£¬ÏÂÁÐ˵·¨Öв» ÕýÈ·µÄÊÇ£¨ £©¡£ ??(A) ?rHm?T?ÊÇH2O (g)µÄ±ê׼Ħ¶ûÉú³ÉìÊ£»(B) ?rHm?T?ÊÇH2O(g)µÄ±ê׼Ħ¶ûȼ???ÉÕìÊ£»(C) ?rHm?T?ÊǸºÖµ£»(D) ?rHm?T?Óë·´Ó¦µÄ?rUm?T?ÔÚÁ¿ÖµÉϲ»µÈ 3.¶Ô·â±ÕϵͳÀ´Ëµ£¬µ±¹ý³ÌµÄʼ̬ºÍÖÕ̬ȷ¶¨ºó£¬ÏÂÁи÷ÏîÖÐûÓÐÈ·¶¨µÄÖµÊÇ£º£¨ £© (A) Q (B)Q+W (C) W(Q=0) (D) Q(W =0) 4. pV?=³£Êý£¨?£½Cp,m/CV,m)µÄÊÊÓÃÌõ¼þÊÇ£¨ £© (A)¾øÈȹý³Ì (B)ÀíÏëÆøÌå¾øÈȹý³Ì (C)ÀíÏëÆøÌå¾øÈÈ¿ÉÄæ¹ý³ÌÇÒ·ÇÌå»ý¹¦ÎªÁã (D) ¾øÈÈ¿ÉÄæ¹ý³Ì 5. ÔÚ¸ôÀëϵͳÄÚ£¨ £© (A)ÈÈÁ¦Ñ§ÄÜÊØºã£¬ìÊÊØºã (B)ÈÈÁ¦Ñ§Äܲ»Ò»¶¨Êغ㣬ìÊÊØºã (C)ÈÈÁ¦Ñ§ÄÜÊØºã£¬ìʲ»Ò»¶¨Êغã (D)ÈÈÁ¦Ñ§ÄÜ¡¢ìʾù²»Ò»¶¨Êغã 6.ijÎïÖÊBµÄ±ê׼Ħ¶ûȼÉÕìÊΪ?CHm?B,?,298.15K???200kJ?mol£¬Ôò¸ÃÎïÖÊ ??1BȼÉÕʱµÄ±ê׼Ħ¶û·´Ó¦ìÊ?rHm?298.15K?Ϊ£¨ £©¡£ ? (A) -200kJ/mol (B) 0 (C) 200kJ/mol (D) 50kJ/mol ?7.ÒÑÖªCH3COOH(l)¡¢CO2(g)¡¢H2O(l)µÄ±ê׼Ħ¶ûÉú³ÉìÊ?fHm?298.15K?/?kJ?mol?1?·Ö ±ðΪ-484.5£¬-393.5£¬-285.8£¬ÔòCH3COOH(l)µÄ±ê׼Ħ¶ûȼÉÕìÊ?CHm?298.15K?Ϊ£¨ £©¡£ ? (A) -874.1kJ/mol (B) 0 kJ/mol (C) -194.8 kJ/mol (D) 194.8 kJ/mol 8.ÈÈÁ¦Ñ§ÄÜÊÇϵͳµÄ״̬º¯Êý£¬Èôijһϵͳ´Óһʼ̬³ö·¢¾Ò»Ñ»·¹ý³ÌÓֻص½Ê¼Ì¬£¬ÔòϵͳÈÈÁ¦Ñ§ÄܵÄÔöÁ¿ÊÇ£¨ £©¡£ (A) ?U?0 (B) ?U?0 (C) ?U?0 (D) ÎÞ·¨È·¶¨ 9.µ±ÀíÏëÆøÌå·´¿¹Ò»¶¨µÄѹÁ¦×÷¾øÈÈÅòÕÍʱ£¬Ôò( ) (A)ìÊ×ÜÊDz»±ä (B)ÈÈÁ¦Ñ§ÄÜ×ÜÊÇÔö¼Ó (C)ìÊ×ÜÊÇÔö¼Ó (D)ÈÈÁ¦Ñ§ÄÜ×ÜÊǼõÉÙ 10. 298KϵÄÌå»ýΪ2dm3µÄ¸ÕÐÔ¾øÈÈÈÝÆ÷ÄÚ×°ÁË1molµÄO2 (g)ºÍ2molµÄH2(g)£¬·¢Éú·´Ó¦Éú³ÉҺ̬ˮ£¬¸Ã¹ý³ÌµÄ¦¤U=£¨ £©¡£ (A) ?U?0 (B) ?U?0 (C) ?U?0 (D) ÎÞ·¨È·¶¨ 11. 273.15K¡¢±ê׼ѹÁ¦Ï£¬1mol ¹ÌÌå±ùÈÚ»¯ÎªË®£¬Æä¦¤U( );¦¤H£¨ £©¡£ (A) ?U?0,?H?0 (B) ?U?0,?U?0 (C) ?U?0 , ?H?0 (D) ÎÞ·¨È·¶¨ 12.·â±ÕϵͳÏÂÁв»Í¬ÀàÐ͹ý³ÌµÄ¦¤H£¬ÄÄÒ»¹ý³Ì²»ÎªÁ㣺£¨ £©¡£ (A)ÀíÏëÆøÌåµÄºãιý³Ì£»(B) Q=0£¬dp=0£¬W¡®=0µÄ¹ý³Ì£»(C)½ÚÁ÷ÅòÕ͹ý³Ì£»(D)ÀíÏëÆøÌå¾øÈÈ¿ÉÄæ¹ý³Ì ?13.ÈôÒÑÖªH2O(g)¼°CO(g)ÔÚ298.15KʱµÄ±ê׼Ħ¶ûÉú³ÉìÊ?fHm?298.15K?·Ö±ðΪ -242kJ/mol¼°-111kJ/mol,H2O(g) + C(ʯī) ¡ú H2(g) + CO(g)µÄ±ê׼Ħ¶û·´Ó¦ìÊ ?¡£ ?rHm?298.15K?Ϊ£¨ £© (A) -200kJ/mol (B) 131 kJ/mol (C) 200kJ/mol (D) 50kJ/mol 14.ÒÑÖª·´Ó¦(1) CO(g) +H2O(g)¡ú CO2(g)+H2(g)µÄ?rHm?298.15K?Ϊ-41.2kJ/mol, (2) ?CH4(g) + 2H2O(g) ¡ú CO2(g) + 4H2(g)µÄ?rHm?298.15K?£½165.0kJ/mol,Ôò·´Ó¦CH4(g) ?+ H2O(g)¡úCO(g) £«3H2(g)µÄ?rHm?298.15K?Ϊ£¨ £©¡£ ?(A) -200kJ/mol (B) 131 kJ/mol (C) 206.2kJ/mol (D) 50kJ/mol 15.ÒÑÖª298.15KʱC2H4(g)¡¢C2H6(g)¼°H2(g)µÄ±ê׼Ħ¶ûȼÉÕìÊ ??CHm?298.15K?/?kJ?mol?1?·Ö±ðΪ-1411£¬-1560ºÍ-285.8£¬Ôò·´Ó¦£º C2H4(g) £«H2(g) ¡úC2H6(g)µÄ±ê׼Ħ¶û·´Ó¦ìÊ?rHm?298.15K?ÊÇ£¨ £©¡£ ?(A) -136.8kJ/mol (B) 131 kJ/mol (C) 206.2kJ/mol (D) 50kJ/mol ¶þ¡¢Ìî¿ÕÌâ 1.1molµ¥Ô×ÓÀíÏëÆøÌå(298.15K,2p),¾Àú(1)µÈÎÂ;(2)¾øÈÈ;(3)µÈѹÈýÌõ¿ÉÄæÅòÕÍ;¾¶ÖÁÌå»ýΪÔÀ´µÄÁ½±¶ÎªÖ¹,Ëù×öµÄ¹¦W1,W2,W3,ÈýÕßµÄ˳ÐòΪ( )¡£ 2.ij»¯Ñ§·´Ó¦ÔÚºãѹ¡¢¾øÈȺÍÖ»×öÌå»ý¹¦µÄÌõ¼þÏÂ,ϵͳζÈÓÉT1ÉýΪT2,´Ë¹ý³ÌµÄìʱäΪ( ). 3.ʯīºÍ½ð¸ÕʯÔÚ298.15KºÍ100kPaϵıê׼Ħ¶ûȼÉÕìÊ·Ö±ðΪ:-393.4kJ/mol ºÍ-395.3kJ/mol,Ôò½ð¸ÕʯµÄ±ê׼Ħ¶ûÉú³ÉìÊΪ( )¡£ 4.Ò»¶¨Á¿µ¥ÀíÏëÆøÌåij¹ý³ÌµÄ¡÷(pV)=20kJ,Ôò´Ë¹ý³ÌµÄ¡÷U=( )kJ,¡÷H=( )kJ. 5.¶ÔÀíÏëÆøÌå½øÐоøÈÈ¿ÉÄæÑ¹Ëõ,´Ë¹ý³ÌµÄ¡÷U=( );¡÷H=( );Q=( £©;W=( )¡£(Ìî>0,<0»ò=0) 6.·â±Õϵͳ¹ý³ÌµÄ¡÷H=¡÷UµÄÌõ¼þ:(1)¶ÔÓÚÀíÏëÆøÌåµ¥´¿PVT±ä»¯µÄ¹ý³Ì( );(2) ?ÓÐÀíÏëÆøÌå²Î¼ÓµÄ»¯Ñ§·´Ó¦( )¡£ 7.¶ÔÓÚijÀíÏëÆøÌå,ÆäCp,m?CV,m?( ) 8.¾øÈÈ¡¢ºãÈÝ¡¢·ÇÌå»ý¹¦ÎªÁ㣬2molµ¥Ô×ÓÀíÏëÆøÌåµÄ???H??=( ) ?p??V9.ÔÚÒ»¸öÌå»ýºã¶¨Îª20dm3£¬ÏµÍ³Óë»·¾³ÎÞÈȽ»»»£¬W¡¯=0µÄ·´Ó¦Æ÷ÖÐ,·¢Éúij·´Ó¦Ê¹Ïµ ͳζÈÉý¸ß1200¡æ,ѹÁ¦Ôö¼Ó300kPa´Ë¹ý³ÌµÄ¡÷U=( )¡£ 10.ѹÁ¦ºã¶¨Îª100kPaϵĵ¥Ô×ÓÀíÏëÆøÌåµÄ???U??=( )¡£ ?V??p11.Ìå»ýºã¶¨Îª2.0¡Á10-3m3,Ò»¶¨Á¿Ë«Ô×ÓÀíÏëÆøÌåµÄ???H??=( )¡£ ?p??V12.ϵͳÄÚ²¿¼°ÏµÍ³Óë»·¾³Ö®¼ä,ÔÚ( )¹ý³Ì,¿É³ÆÎª¿ÉÄæ¹ý³Ì. ????13.ÔÚÒ»¶¨Î¶ȵıê׼̬Ï£¬?cHm( )¡£?cHm( )¡£ ?H2,g?£½?fHm?C,ʯī?£½?fHm??14.ÔÚ25¡æµÄ±ê׼̬ÏÂC2H6(g)µÄ?cHm-?CUm?( )¡£ 15.Ò»¶¨Á¿ÀíÏëÆøÌå½ÚÁ÷ÅòÕ͹ý³ÌÖÐ:¦ÌJ-T=( ); ¡÷H=( ); ¡÷U=( );W=( )¡£ 16.ÔÚ300KµÄ³£Ñ¹ÏÂ,2molµÄij¹Ì̬ÎïÖÊ,ÍêÈ«Éý»ª¹ý³ÌµÄÌå»ý¹¦W=( )kJ 17 Ò»¶¨Á¿µÄÀíÏëÆøÌåÓÉͬһʼ̬ѹËõÖÁͬһѹÁ¦p£¬¶¨ÎÂѹËõ¹ý³ÌµÄÖÕ̬Ìå»ýΪV£¬¿ÉÄæ¾øÈÈѹËõ¹ý³ÌµÄÖÕ̬Ìå»ýV¡¯£¬ÔòV¡¯£¨ £©V¡££¨Ñ¡ÔñÌî> ¡¢= ¡¢< £© 18.ÒÑÖª?fHm(CH3OH,l,298K)= -238.57 kJ/mol£»?fHm(CO,g,298K)= -110.525 kJ/mol£¬ ??Ôò·´Ó¦CO(g)+2H2(g)==CH3OH(l)µÄ?rHm (298K)=£¨ £©£¬?rUm (298K)=( )¡£ ????19. 25 ¡æ C2H4(g)µÄ?cHm= -1 410.97kJ/mol £»CO2(g)µÄ?fHm= -393.51kJ/mol £¬ H2O(l)µÄ?fHm= -285.85kJ/mol£»ÔòC2H4(g)µÄ?fHm= £¨ £©¡£ 20.½¹¶ú-ÌÀÄ·ËïϵÊý?£½£¨ £©£¬?J-T>0±íʾ½ÚÁ÷ÅòÕͺóζȣ¨ £©½ÚÁ÷ÅòÕÍǰΠJ-T¶È¡££¨µÚ¶þ¿ÕÑ¡´ð¸ßÓÚ¡¢µÍÓÚ»òµÈÓÚ£© 21.ÀíÏëÆøÌåÔÚ¾øÈÈÌõ¼þÏÂÏòÕæ¿ÕÅòÕÍ£¬?U£¨ £©0, ?H£¨ £©0,Q£¨ £©0£¬W£¨ £©0¡£ £¨Ñ¡ÔñÌî>, <, =£© Èý¡¢ÅжÏÌâ ??1.ϵͳµÄͬһ״̬¾ßÓÐÏàͬµÄÌå»ý. ( ) 2.ϵͳµÄ²»Í¬×´Ì¬¿É¾ßÓÐÏàͬµÄÌå»ý. ( ) 3.״̬¸Ä±ä,ϵͳµÄËùÓÐ״̬º¯Êý¶¼¸Ä±ä. ( ) 4.ϵͳµÄij״̬º¯Êý¸Ä±äÁË,Æä״̬һ¶¨¸Ä±ä. ( ) 5.ÔÚºãÈÝÏÂ,Ò»¶¨Á¿ÀíÏëÆøÌå,µ±Î¶ÈÉý¸ßʱ,ÆäìÊÖµ½«Ôö¼Ó.£¨ £© 6.¸ôÀëϵͳÖз¢ÉúµÄʵ¼Ê¹ý³Ì,?U?0,W?0¡££¨ £© 7.Ò»¶¨Á¿µÄÀíÏëÆøÌå´ÓÏàͬµÄʼ̬·Ö±ð¾µÈοÉÄæÅòÕÍ,¾øÈÈ¿ÉÄæÅòÕÍ´ïµ½¾ßÓÐÏàͬѹÁ¦µÄÖÕ̬,ÖÕ̬µÄÌå»ý·Ö±ðΪV2ºÍV2¡¯,ÔòV2 >V2¡¯ .£¨ £© 8.1mol´¿ÀíÏëÆøÌå,µ±ÆäTºÍUÈ·¶¨Ö®ºó,ÆäËüµÄ״̬º¯Êý²ÅÓж¨Öµ¡££¨ £© 9.ijʵ¼ÊÆøÌå¾ÀúÒ»²»¿ÉÄæÑ»·,¸Ã¹ý³ÌµÄQ=400J,Ôò¹ý³ÌµÄW=400J¡££¨ £© 10.ÔÚÒ»¶¨µÄζÈÏÂ,?fHm½ð¸Õʯ,s,T?0 kJ/mol¡£ ( ) ???11. 1mol¡¢100¡æ¡¢101325PaϵÄË®±ä³ÉͬÎÂͬѹµÄË®ÕôÆø£¬ÈôË®ÕôÆøÊÓΪÀíÏëÆøÌ壬Òò¹ý³ÌζȲ»±ä£¬Ôò¦¤U=0,¦¤H=0.( ) 12.·´Ó¦ CO(g) + 0.5O2 (g) = CO2 (g)µÄ±ê׼Ħ¶û·´Ó¦ìÊ?rHm?T? ¼´ÊÇCO2µÄ±ê׼Ħ ?¶ûÉú³Éìʱä?fHm?T?¡££¨ £© ?13.pV?³£ÊýÊÊÓÃÓÚ·ÇÌå»ý¹¦ÎªÁãµÄÀíÏëÆøÌå¾øÈÈ¿ÉÄæ¹ý³Ì.£¨ £© 14.ʵ¼ÊÆøÌåµÄ½ÚÁ÷ÅòÕ͹ý³ÌÊǵÈìʹý³Ì¡£ £¨ £© 15.¾øÈÈ¡¢ºãѹ·ÇÌå»ý¹¦ÎªÁãµÄ¹ý³ÌÊǵÈìʹý³Ì¡££¨ £© 16. 298.15Kʱ,C(ʯī)µÄ±ê׼Ħ¶ûȼÉÕìÊÓÚCO2 (g)µÄ±ê׼Ħ¶ûÉú³ÉìÊÖµÏàµÈ¡££¨ £© 17.Èôijһϵͳ´Óһʼ̬³ö·¢¾Ò»Ñ»·¹ý³ÌÓֻص½Ê¼Ì¬£¬ÔòϵͳµÄÈÈÁ¦Ñ§ÄܵÄÔöÁ¿ÎªÁã¡££¨ £© Ñ¡ÔñÌâ´ð°¸: 1.D;2.B;3.A;4.C;5.C;6.A;7.A;8.A;9.D;10.A;11.B;12.D;13.B;14.C;15.A Ìî¿ÕÌâ´ð°¸: 1. W3>W1>W2,£»2. ¡÷H=0£»3. 1.9kJ/mol£»4. 30 kJ, 50kJ£»5. >0,>0,=0,>0£»6. ¡÷T=0,¦²¦ÃB(g)=0£»7. R;8.2.5V; 9. 0; 10. 150kPa; 11. 7.0¡Á10-3m3; 12. ÔÚһϵÁÐÎÞÏÞ½Ó½üƽºâÌõ¼þϽøÐеĹý³Ì,³ÉΪ¿ÉÄæ¹ý³Ì; 13. CO2(g), H2O(l); 14. -6.197kJ/mol; 15. 0; 0; 0; 0; 16. -4.989kJ; 17. >; 18. -128.0Kj/mol , -120.6kJ/mol; 19. 52.25kJ/mol; 20. ?r??T??,??p?HµÍÓÚ; 21. = = = = ÅжÏÌâ´ð°¸: 1.¡Ì£»2.¡Ì£»3.¡Á£»4.¡Ì£»5.¡Ì£»6.¡Ì£»7.¡Ì£»8.¡Á£»9.¡Ì£»10.¡Ì£»11.¡Á£»12.¡Á£»13.¡Ì£»14.¡Ì£»15.¡Ì;16.¡Ì£»17.¡Ì ËÄ¡¢¼ÆËãÌâ 1. 10molÀíÏëÆøÌåÓÉ25¡æ¡¢106PaÅòÕ͵½25¡æ¡¢105Pa, Éè¹ý³ÌÓÉ(1) ×ÔÓÉÅòÕÍ£»(2)·´¿¹ºãÍâѹ105PaÅòÕÍ£»(3) ºãοÉÄæÅòÕÍ¡£·Ö±ð¼ÆËãÉÏÊö¸÷¹ý³ÌµÄW,Q,¡÷UºÍ¡÷H¡£ 10 mol pg whose initial state is T1=25¡æ,p1=106Pa,through the following different paths expands to final state T2=25¡æ,p2=106Pa . Calculate W,Q,¡÷U and ¡÷H of each paths. (1) Free expansion process. (2) Expends against an external constant pressure Psu=105Pa . (3) Expends isothermal reversible. ´ð°¸£º(1)0,0,0,0;(2) -22.3kJ,22.3kJ,0,0;(3) -57.1kJ,57.1kJ,0,0 2. 2molµ¥Ô×ÓÀíÏëÆøÌ壬ÓÉ600K,1.00Mpa·´¿¹ºãÍâѹ100kPa¾øÈÈÅòÕ͵½Æ½ºâ¡£¼ÆËã¸Ã¹ý³ÌµÄW,Q,¡÷UºÍ¡÷H¡£ 2mol single atomic perfect gas adiabatically Expends against an external constant pressure Psu=100kPa from T1=600K£¬p1=1.00Mpa to equilibrium. calculate W£¬Q,¡÷H£¬ ¡÷U of this process. ´ð°¸£º-5.39kJ, 0,-5.39kJ, -8.98kJ 3. ÔÚ298.15K¡¢6¡Á101.3kPaѹÁ¦Ï£¬1molµ¥Ô×ÓÀíÏëÆøÌå½øÐоøÈÈÅòÕÍ£¬×îÖÕѹÁ¦Îª101.3kPa,ÈôΪ(1)¿ÉÄæÅòÕÍ£»(2)·´¿¹ºãÍâѹ101.3kPaÅòÕÍ¡£ÇóÉÏÊö¶þ¾øÈȹý³ÌµÄÆøÌåµÄ×îÖÕζÈÒÔ¼°W,¡÷UºÍ¡÷H¡£ 1 mol single atomic perfect gas whose initial state is T1=298.15K,p1=6¡Á101.3kPa, adiabatically expends through the following two different paths to final state p2=101.3kPa . Calculate T2,and W,¡÷U, ¡÷H of each paths. ´ð°¸£º(1)145.6K;-1.902kJ, -1.902kJ, -3.171kJ;(2) 198.8K;-1.239kJ, -1.239kJ, -2.065kJ 4. 2molijÀíÏëÆøÌ壬Cp,m?3.5R¡£ÓÉʼ̬100kPa,50dm3,ÏȺãÈݼÓÈÈʹѹÁ¦Éý¸ßÖÁ200kPa,ÔÙºãѹÀäȴʹÌå»ýËõСÖÁ25dm3,ÆäÕû¸ö¹ý³ÌµÄW,Q,¡÷UºÍ¡÷H¡£ 2 mol perfect gas£¬with Cp,m?3.5R. From the initial state of 100kPa,50dm3 is firstly isochoricly heated to increase the pressure to 200kPa ,then isobaricly cooled to decrease the volume to 25dm3 . Calculate W, Q,¡÷U, ¡÷H of the whole process. ´ð°¸: Q=-5.00 kJ, W=5.00kJ;¡÷U=0;¡÷H=0 5. 4molijÀíÏëÆøÌ壬Cp,m?3.5R¡£ÓÉʼ̬100kPa,100dm3,ÏȺãѹ¼ÓÈÈʹÌå»ýÔö´óµ½150dm3,ÔÙºãÈݼÓÈÈʹѹÁ¦Ôö´óµ½150kPa,ÇóÕû¸ö¹ý³ÌµÄW,Q,¡÷UºÍ¡÷H¡£ 4 mol perfect gas£¬with Cp,m?3.5R. From the initial state of 100kPa,100dm3 is firstly isobaricly heated to increase the volume to 150dm3 ,then isochoricly heated to increase the pressure to 150kPa .Calculate W, Q,¡÷U, ¡÷H of the whole process. ´ð°¸: Q=23.75 kJ, W=-5.00kJ;¡÷U=18.75kJ;¡÷H=31.25kJ 6. 5molË«Ô×ÓÀíÏëÆøÌå´Óʼ̬300K£¬200kPa,ÏȺãοÉÄæÅòÕ͵½Ñ¹Á¦Îª50kPa,ÔÙ¾øÈÈ¿ÉÄæÑ¹Ëõµ½Ä©Ì¬Ñ¹Á¦200kPa¡£Çóĩ̬ζÈT¼°Õû¸ö¹ý³ÌµÄQ,W,¡÷UºÍ¡÷H¡£ 5 mol double atomic perfect gas£¬ from the initial state of 300K£¬200kPa is firstly isothermal reversible expended to 50kPa ,then adiabatic reversible compressed to the final pressure of 200kPa .Calculate final temperature T2 and Q,W,¡÷U, ¡÷H of the whole process. ´ð°¸£ºT=445.80K;Q=17.29kJ; W=-2.14kJ;¡÷U=15.15kJ,¡÷H=21.21kJ 7. 2molµ¥Ô×ÓÀíÏëÆøÌåA,3molË«Ô×ÓÀíÏëÆøÌåBÐγɵÄÀíÏëÆøÌå»ìºÏϵͳ£¬ÓÉ350K,72.75dm3µÄʼ̬£¬·Ö±ð¾ÏÂÁйý³Ì£¬µ½´ï¸÷×ÔµÄÆ½ºâĩ̬£º (1) ºãοÉÄæÅòÕÍÖÁ120dm3 (2) ºãΡ¢Íâѹºã¶¨Îª121.25kPaÅòÕÍÖÁ120dm3 (3) ¾øÈÈ¿ÉÄæÅòÕÍÖÁ120dm3 (4) ¾øÈÈ¡¢·´¿¹121.25kPaµÄºã¶¨ÍâѹÖÁƽºâ¡£ ·Ö±ð¼ÆËã¸÷¹ý³ÌµÄQ,W,¡÷UºÍ¡÷H¡£ 2 mol single atomic perfect gas A and 3 mol double atomic perfect gas B are mixed to form a mixture system. The mixture system from the initial state of 350K, 72.75dm3 through the following different paths reaches to its equilibrium state. Calculate Q,W,¡÷U, ¡÷H of each paths. (1) Isothermal reversible expands to 120dm3 (2) Isothermal expands against an external constant pressure of 121.25kPa to 120dm3 (3) Adiabatic reversible expands to 120dm3 (4) Adiabatic expands against an external constant pressure of 121.25kPa to equilibrium. ´ð°¸£º(1) Q=-W=7282J,¡÷U=¡÷H=0 (2) Q=-W=5729J,¡÷U=¡÷H=0 (3)Q=0, W=¡÷U=-6479.6J,¡÷H=-9565.1 J (4) Q=0, W=¡÷U=-3881J,¡÷H=-5729.8 J 8. 2molµ¥Ô×ÓÀíÏëÆøÌ壬´Ó273K, 206.6kPaµÄÊ¼Ì¬ÑØpV?1?1?pV11µÄ;¾¶¿ÉÄæ¼ÓÈÈ µ½405.2kPaµÄĩ̬£¬Çó´Ë¹ý³ÌµÄQ,W,¡÷UºÍ¡÷H¡£ 2mol single atomic perfect gas, from initial state T1=273K£¬p1=206.6kPa through ?1Q,¡÷H£¬ ¡÷U of pV?1?pV11 reversible heated to final state p2=405.2kPa. Calculate W£¬ this process. ´ð°¸£ºQ=27.24kJ, W=-6.81kJ, ¡÷U=20.429kJ, ¡÷H=34.048kJ 9. ÒÑ֪ˮ(H2O,l)ÔÚ100¡æµÄ±¥ºÍÕôÆøÑ¹p*?101.325kPa£¬ÔÚ´Ëζȡ¢Ñ¹Á¦ÏÂË®µÄĦ¶ûÕô·¢ìÊ?vapHm?40.668kJ?mol?1¡£ÇóÔÚ100¡æ£¬101.325kPaÏÂʹ1kgË®ÕôÆøÈ«²¿Äý½á³ÉÒºÌåˮʱµÄQ,W,¡÷UºÍ¡÷H¡£ÉèË®ÕôÆøÊÊÓÃÀíÏëÆøÌå״̬·½³Ì¡£ Calculate the Q,W, ¡÷U,¡÷H of the following process: 1kg H2O(g, 100¡æ,101.325kPa)¡úH2O(l, 100¡æ,101.325kPa). Given that: p*(H2O,100¡æ)=101.325kPa, ¡÷vapHm(H2O,100¡æ)= 40.668kJ¡¤mol-1, Supposing the vapor obeys the state equation of perfect gas ´ð°¸£ºQ=¡÷H=-2257kJ, W=172.2kJ, ¡÷U=-2085kJ 10. (1)1molË®ÔÚ100¡æ£¬101.325kPaºãѹÕô·¢ÎªÍ¬ÎÂͬѹϵÄÕôÆø(¼ÙÉèΪÀíÏëÆøÌå)ÎüÈÈΪ40.67kJ/mol,Çó£ºÉÏÊö¹ý³ÌµÄQ,W,¡÷UºÍ¡÷H£¿(2)ʼ̬ͬÉÏ£¬µ±ÍâѹºãΪ50kPaʱ½«Ë®ºãÎÂÕô·¢£¬È»ºó½«´Ë1mol, 100¡æ£¬50kPaµÄË®ÕôÆøºãοÉÄæ¼Óѹ±äΪĩ̬100¡æ£¬101.325kPaµÄË®ÕôÆø£¬Çó´Ë¹ý³ÌµÄQ,W,¡÷UºÍ¡÷H£¿(3)½«1molË®(100¡æ£¬101.325kPa)ÔÚÕæ¿ÕÖÐÕô·¢ÎªÍ¬ÎÂͬѹµÄË®ÕôÆø£¬Çó¹ý³ÌµÄQ,W,¡÷UºÍ¡÷H£¿ (1) 1mol water under 100¡æ and 101.325kPa is vaporized at an external constant pressure to vapor with the same temperature and same pressure( Assume as perfect gas), the heat absorbed in this process is 40.67kJ/mol. Calculate the Q,W, ¡÷U,¡÷H of process. (2)The initial state is same as (1), firstly the water is isothermal vaporized at an external constant pressure of 50kPa, then the vapor is isothermal reversible compressed from 100¡æ£¬50kPa to the 100¡æ£¬101.325kPa . Calculate the Q,W, ¡÷U,¡÷H of the process £¨3£©1mol water under 100¡æand 101.325kPa is vaporized isothermally to vacuum and is changed to vapor with the same temperature and same pressure. Calculate the Q,W, ¡÷U,¡÷H of process. ´ð°¸£º(1)Q=¡÷H=40.67kJ, W=-3.102kJ, ¡÷U=37.57kJ;(2) Q=38.48kJ;¡÷H=40.67kJ, W=-0.911kJ, ¡÷U=37.57kJ;(3) Q=¡÷U =37.57kJ, W=0kJ, ¡÷H =40.67kJ 11. 2mol,60¡æ,100kPaµÄҺ̬±½ÔÚºãÍâѹÏÂÈ«²¿±äΪ60¡æ£¬24kPaµÄÕôÆø£¬Çë¼ÆËã¸Ã¹ý³ÌµÄQ,W,¡÷UºÍ¡÷H£¿(ÒÑÖª40¡æÊ±£¬±½µÄÕôÆøÑ¹Îª24kPa£¬Æû»¯ìÊΪ33.43kJ/mol,¼Ù¶¨±½(l)ºÍ(g)µÄĦ¶û¶¨Ñ¹ÈÈÈݿɽüËÆ¿´×öÓëζÈÎ޹أ¬·Ö±ðΪ141.5J?mol?K94.12J?mol?K£¬ºöÂÔÒºÌåµÄÌå»ý) 2mol liquid benzene under 60¡æand 100kPa is vaporized completely at an external constant pressure to vapor of 60¡æand 24kPa. Calculate the Q,W, ¡÷U,¡÷H of process. ?1?1?1?1¼° (Given p*(C6H6,40¡æ)=24kPa, ¡÷vapHm(C6H6,40¡æ)= 33.43kJ¡¤mol-1, Cp,m?C6H6,l??141.5J?mol?1?K?1, Cp,m?C6H6,g??94.12J?mol?1?K?1, bothCp,m?C6H6,l? and Cp,m?C6H6,g? don¡¯t change with temperature, the volume of liquid can be omitted). ´ð°¸£ºQ=¡÷H=64.96kJ, W=-5.54kJ, ¡÷U=59.42kJ 12. ÒÑÖªC(ʯī)¼°H2(g)ÔÚ25¡æÊ±µÄ±ê׼Ħ¶ûȼÉÕìÊ·Ö±ðΪ?393.51kJ?mol?1¼° ?285.84kJ?mol?1£»Ë®ÔÚ25¡æÊ±µÄÆû»¯ìÊΪ44.0kJ?mol?1£¬·´Ó¦£ºC(ʯī)£« 2H2O(g)¡ú2H2 (g)+ CO2 (g)ÔÚ25¡æÊ±µÄ±ê׼Ħ¶û·´Ó¦ìÊ?rHm?298.15K?Ϊ¶àÉÙ£¿ ???Given at 25¡æ , ?cHm (C, graphite)= -393.51kJ/mol, ?cHm (H2, g)= -285.84kJ/mol; ¡÷vapHm(H2O,25¡æ)= 40.0kJ¡¤mol-1, Calculate ?rHm?298.15K?of the following reaction ?at 25¡æ.: C(graphite)£«2H2O(g)¡ú2H2 (g)+ CO2 (g) ´ð°¸£º?rHm?298.15K?£½90.17kJ?mol ??113. ÆøÏà·´Ó¦A(g) +B(g)¡úY(g)ÔÚ500¡æ£¬100kPa½øÐС£ÒÑÖªÊý¾Ý£º ÎïÖÊ A(g) B(g) Y(g) ???fHm?298.15K?/kJ?mol?1 25¡æ~500¡æµÄCp,m/J?mol?K 19.1 4.2 30.0 ??1?1-235 52 -241 ?ÊÔÇó?rHm?298.15K?¡¢?rHm?773.15K?¡¢?rUm?773.15K? ?For gas reaction A(g) +B(g)¡úY(g) proceeds at 500¡æ£¬100kPa. The date is shown in the following table: substance A(g) B(g) Y(g) ???fHm?298.15K?/kJ?mol?1 25¡æ~500¡æµÄCp,m/J?mol?K 19.1 4.2 30.0 ??1?1-235 52 -241 ?Calculate ?rHm?298.15K?¡¢?rHm?773.15K?¡¢?rUm?773.15K? of the reaction. ?´ð°¸£º?58kJ?mol£¬?54.82kJ?mol£¬?48.39kJ?mol 14. 25¡æÏ£¬ÃܱպãÈݵÄÈÝÆ÷ÖÐÓÐ10g¹ÌÌåÝÁC10H8(s)ÔÚ¹ýÁ¿µÄO2(g)ÖÐÍêȫȼÉÕ³ÉCO2 (g)ºÍH2O(l)¡£¹ý³Ì·ÅÈÈ401.727kJ¡£Çó£º (1) C10H8(s)£«12O2(g)£½10CO2 (g)£«4H2O(l)µÄ·´Ó¦½ø¶È£» ?? (2) C10H8(s)µÄ?cUm£»(3) C10H8(s)µÄ?cHm ?1?1?1Under 25¡æ and in a tightly closed isochoric container, 10g C10H8(s) was completely combusted into CO2 (g) and H2O(l) in excess O2(g) , releasing heat of 401.727kJ in this process. Please calculate: (1)Extent of reaction :C10H8(s)£«12O2(g)£½10CO2 (g)£«4H2O(l)£» ?? (2) ?cUm of C10H8(s); (3) ?cHm of C10H8(s). ´ð°¸£º78.019mmol;-5149.1kJ/mol;-5154.1kJ/mol µÚÈýÕ ÈÈÁ¦Ñ§µÚ¶þ¶¨ÂÉ Ò»¡¢Ñ¡ÔñÌâ 1.ÓÉÈÈÁ¦Ñ§µÚ¶þ¶¨ÂÉ¿ÉÖª£¬ÔÚÈÎһѻ·¹ý³ÌÖУ¨ £©¡£ £¨A£©¹¦ºÍÈÈ¿ÉÒÔÍêÈ«»¥Ïàת»»£»£¨B£©¹¦¿ÉÒÔÍêȫת»»ÎªÈÈ£¬¶øÈÈÈ´²»ÄÜÍêȫת»»Îª¹¦£»£¨C£©¹¦ºÍÈȶ¼²»ÄÜÍêÈ«»¥Ïàת»»£»£¨D£©¹¦²»ÄÜÍêȫת»»ÎªÈÈ£¬¶øÈÈÈ´¿ÉÒÔÍêȫת»»Îª¹¦£» 2.ÔÚ·â±ÕϵͳÄÚ·¢ÉúÈκξøÈȹý³ÌµÄ¡÷S£¨ £© £¨A£©Ò»¶¨´óÓÚÁ㣻£¨B£©Ò»¶¨Ð¡ÓÚÁ㣻£¨C£©µÈÓÚÁ㣻£¨D£©¿ÉÄÜ´óÓÚÁãÒ²¿ÉÄܵÈÓÚÁã 3.ÔÚ¸ôÀëϵͳÄÚ·¢ÉúÈκÎÃ÷ÏÔ½øÐеĹý³Ì£¬Ôò´Ë¹ý³ÌµÄ×ÜìØ±ä¡÷£¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©Ìõ¼þ²»È«ÎÞ·¨È·¶¨ 4.ÔÚ¾øÈÈ¡¢ºãѹ¡¢W¡¯=0µÄ·â±ÕϵͳÄÚ£¬·¢ÉúÏÂÁл¯Ñ§¹ý³Ì£º C2H5OH(l) + 3O2(g) = 2CO2(g) + 3H2O(g),´Ë¹ý³ÌµÄW( );¡÷rHm( );¡÷rUm( );¡÷rSm( ). £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©Ìõ¼þ²»È«ÎÞ·¨È·¶¨ 5.ÔÚ¾øÈÈ¡¢ºãÈÝ¡¢W¡¯=0µÄ·â±ÕϵͳÄÚ£¬·¢ÉúÏÂÁл¯Ñ§¹ý³Ì£º CH3OH(g) + 1.5O2(g) = CO2(g) + 2H2O(g),´Ë¹ý³ÌµÄW( );¡÷rHm( );¡÷rUm( );¡÷rSm( ). £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ 6.ÎïÖʵÄÁ¿Ò»¶¨µÄË«Ô×ÓÀíÏëÆøÌå,¾½ÚÁ÷ÅòÕͺó,ϵͳµÄѹÁ¦Ã÷ÏÔϽµ,Ìå»ý±ä´ó,´Ë¹ý³ÌµÄW( );Q( );¡÷U( );¡÷H( );¡÷S( );¡÷G( );¡÷A( )¡£ £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ iSO S=£¨ £© 7.ÎïÖʵÄÁ¿Ò»¶¨µÄijʵ¼ÊÆøÌ壬ÏòÕæ¿ÕÖоøÈÈÅòÕÍÖ®ºó,ϵͳµÄpºÍVÖ®»ý±äС,´Ë¹ý³ÌW( );Q( );¡÷U( );¡÷H( );¡÷S( ); £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ 8.·ÇÀíÏëÆøÌå¾øÈÈ¿ÉÄæÑ¹Ëõ¹ý³ÌµÄ¡÷S£¨ £©¡£ £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ 9.µâI2(s)ÔÚÖ¸¶¨Î¶ȵı¥ºÍÕôÆøÑ¹ÏÂÉý»ªÎªµâÕôÆøI2(g),´Ë¹ý³ÌµÄW( );Q( );¡÷U( );¡÷H( );¡÷S( );¡÷G( );¡÷A( )¡£ £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ 10.ÔÚ0¡æ¡¢101.325kPaµÄÍâѹÏÂ,H2O(s)=H2O(l),´Ë¹ý³ÌµÄW( );Q( );¡÷U( ); ¡÷H( );¡÷S( );¡÷G( );¡÷A( )¡£ £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ 11.ͬһζȡ¢Ñ¹Á¦Ï£¬Ò»¶¨Á¿Ä³´¿ÎïÖʵÄìØÖµ£¨ £©¡£ (A) S(g)>S(l)>S(s) (B) S(g) £¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ 13.Ò»¶¨Ìõ¼þÏ£¬Ò»¶¨Á¿µÄ´¿ÌúÓë̼¸ÖÏà±È£¬ÆäìØÖµÊÇ£¨ £©¡£ (A) S(´¿Ìú)>S(̼¸Ö) (B) S(´¿Ìú) ??p?T£¨A£©>0£»£¨B£©=0£»£¨C£©<0£»£¨D£©ÎÞ·¨È·¶¨ 15.ÏÂÁÐÄÄÒ»¸ö¹ØÏµÊ½ÊDz»ÕýÈ·µÄ£¿£¨ £© (A) ???G???V (B) ??p?T??G?????S ??T?p???A/T?????G/T??UH????(C) ? (D) ???2?TT?TT??V??p16.ÎïÖʵÄÁ¿ÎªnµÄÀíÏëÆøÌåºãÎÂѹËõ£¬µ±Ñ¹Á¦ÓÉp1±äµ½p2ʱ£¬Æä¡÷GÊÇ( )¡£ (A) nRTln??p1?? (B) ?p2??p2p1?p?npdp (C) V?p2?p1? (D) nRTln?2? ?p?RT?1?17.ijϵͳÈçͼËùʾ£¬³éÈ¥¸ô°å£¬ÔòϵͳµÄìØ£¨ £©¡£ 1molO2 20¡æ,V 1molN2 20¡æ,V £¨A£© Ôö¼Ó£»£¨B£©¼õС£»£¨C£©²»±ä£»£¨D£©ÎÞ·¨È·¶¨ 18. ijϵͳÈçͼËùʾ£¬³éÈ¥¸ô°å£¬ÔòϵͳµÄìØ£¨ £©¡£ 1molN2 20¡æ,V 1molN2 20¡æ,V (A) Ôö¼Ó£»£¨B£©¼õС£»£¨C£©²»±ä£»£¨D£©ÎÞ·¨È·¶¨ 19.´ÓÈÈÁ¦Ñ§Ëĸö»ù±¾·½³Ì¿Éµ¼³ö???U?????S??V? (A) ???A???U???H???G?£»£¨B£©£»£¨C£©£»£¨D£©??????? ?V?V?S?T??T??S??p??p20.1molÀíÏëÆøÌå(1)¾ºãÎÂ×ÔÓÉÅòÕÍʹÌå»ýÔö¼ÓÒ»±¶£»(2)¾ºãοÉÄæÅòÕÍʹÌå»ýÔö¼Ó Ò»±¶£»(3)¾¾øÈÈ×ÔÓÉÅòÕÍʹÌå»ýÔö¼ÓÒ»±¶£»(4)¾¾øÈÈ¿ÉÄæÅòÕÍʹÌå»ýÔö´óÒ»±¶¡£ÔÚÏÂÁнáÂÛÖкÎÕßÕýÈ·?( ) (A) ?S1??S2??S3??S4 £¨B£©?S1??S2,?S3??S4?0 £¨C£©?S1??S4,?S2??S3£» £¨D£©?S1??S2??S3,?S4?0 ¶þ¡¢Ìî¿ÕÌâ 1. 1molÀíÏëÆøÌå´Óp1=5MPa½ÚÁ÷ÅòÕ͵½p2=1MPaʱµÄìØ±äΪ£º¡÷A( )¡÷G. (Ìî<£¬>£¬=ºÅ£© 2.¸ôÀëϵͳÖз¢ÉúµÄʵ¼Ê¹ý³Ì ,Æä¡÷S¡¢¡÷U¡¢WºÍQÄÄЩ²»ÎªÁã.( ) 3.ÔÚ383K¡¢±ê׼ѹÁ¦Çé¿öÏ£¬1mol¹ýÀäË®ÕôÆøÄý½á³ÉË®£¬ÔòÌåϵµÄìØ±ä£¨ £©0£»»·¾³µÄìØ±ä£¨ £©0¡£Ìåϵ¼ÓÉÏ»·¾³µÄ×ÜìØ±ä (Ìî<£¬>£¬=ºÅ£© 4.ÔÚ263K¡¢±ê׼ѹÁ¦Çé¿öÏ£¬1mol¹ýÀäË®Äý½á³É±ù£¬ÔòϵͳµÄìØ±ä£¨ £©0£»»·¾³µÄìØ±ä£¨ £©0¡£ÏµÍ³¼ÓÉÏ»·¾³µÄ×ÜìØ±ä (Ìî<£¬>£¬=ºÅ£© 5.ÀíÏëÆøÌåÔÚµÈÎÂÌõ¼þÏÂÏòÕæ¿ÕÅòÕÍ£¬¡÷H( )0£»¡÷U( )0£»¡÷S( )0£»¡÷G( )0;¡÷A( )0. (Ìî<£¬>£¬=ºÅ) 6.ÈÈÁ¦Ñ§µÚ¶þ¶¨ÂɵĿËÀÍÐÞ˹±íÊö·¨Îª£¨ £©¡£ 7.ÈÈÁ¦Ñ§µÚ¶þ¶¨ÂɵĿª¶ûÎıíÊö·¨Îª£¨ £©¡£ 8.273 K,±ê׼ѹÁ¦Ï£¬1mol¹ÌÌå±ùÈÚ»¯ÎªË®£¬ÆäQ( )0;W( )0;¡÷U( )0; ¡÷H( );¡÷S( ); ¡÷G( )0(Ìî<£¬>£¬=ºÅ) 9.ʹһ¹ý³ÌµÄ¡÷S=0£¬Ó¦Âú×ãµÄÌõ¼þÊÇ£¨ £©¡£ 10.ÈÈÁ¦Ñ§µÚÈý¶¨ÂɵıíÊöΪ£¨ £©£¬Êýѧ±í´ïʽΪ£¨ £©¡£ 11.ÓÉ¿ËÀÅåÁú·½³Ìµ¼³ö¿Ë-¿Ë·½³ÌµÄ»ý·ÖʽʱËù×öµÄÈý¸ö½üËÆ´¦Àí·Ö±ðÊÇ£¨ £©£»£¨ £©£»£¨ £©¡£ 12.ìØÔöÔÀí±íÊöΪ£¨ £©¡£ 13.ÔÚ¸ôÀëϵͳ½øÐеĿÉÄæ¹ý³Ì¡÷S( )0£¬½øÐеIJ»¿ÉÄæ¹ý³Ì¡÷S( )0 14.¹«Ê½dU=TdS-pdVµÄÊÊÓÃÌõ¼þ£¨ £©¡£ 15.ÀíÏëÆøÌåÔÚµÈÎÂÌõ¼þÏÂÏòÕæ¿ÕÅòÕÍ£¬¡÷S( )0(Ìî<£¬>£¬=ºÅ) 16.1molÀíÏëÆøÌåÓÉͬһʼ̬¿ªÊ¼·Ö±ð¾¿ÉÄæ¾øÈÈÅòÕÍ(¢ñ)Óë²»¿ÉÄæ¾øÈÈÅòÕÍ(¢ò)ÖÁÏàͬÖÕ̬ζȣ¬Ôò?UI???UII,?SI???SII(Ìî<£¬>£¬=ºÅ) ?(Ìî<£¬>£¬=ºÅ) ?¡£ 17.ÔÚ¸ôÀëϵͳÖз¢Éúij¾çÁÒ»¯Ñ§·´Ó¦£¬Ê¹ÏµÍ³µÄζȼ°Ñ¹Á¦½ÔÃ÷ÏÔÉý¸ß£¬Ôò¸ÃϵͳµÄ ?S??;?U??;?H??;?A?18.Ò»¶¨Á¿´¿ÎïÖʵÄ???A???G???S???S??;?;?;????????????????V?T?T?T??T??p??p??V19.¸ù¾ÝìØµÄÎïÀíÒâÒåÅжϱ½ÒÒÏ©¾ÛºÏ³É¾Û±½ÒÒÏ©µÄ¹ý³Ì¡÷S( )0£»ÆøÌåÔÚ´ß»¯¼ÁÉÏ Îü¸½¡÷S( )0£»ÒºÌ¬±½Æû»¯ÎªÆøÌ¬±½¡÷S( )0(Ìî<£¬>£¬=ºÅ) 20.ÓÉÈÈÁ¦Ñ§»ù±¾·½³Ì»òÂó¿Ë˹Τ¹ØÏµÊ½¿ÉÖª£º ??G???T???U???H???A???V??£»?£»?£»?£»?£»??????????????????????????V?S??S?p??T?V??T?p??p?T??p?SÈý¡¢ÅжÏÌâ 1. ¸ôÀëϵͳÖз¢ÉúµÄÈκÎʵ¼Ê¹ý³Ì, ÆäìØ±ä¡÷S=0 ( ). 2. ϵͳ¾ÀúÒ»¸ö²»¿ÉÄæÑ»·¹ý³Ì£¬ÆäìØ±ä¡÷S >0.( ) 3.´ÓÈÈÁ¦Ñ§»ù±¾·½³ÌÖпɵ¼³ö??U/?S?V???H/?S?p¡£ ( ) 4. ´ÓÈÈÁ¦Ñ§»ù±¾·½³ÌÖпɵ¼³ö??A/?T?V???G/?T?p.( ) ?5. ÓÉÈÈÁ¦Ñ§µÚ¶þ¶¨ÂÉ¿ÉÖª,ÔÚÈÎһѻ·¹ý³ÌÖÐ,¹¦¿ÉÒÔÍêȫת»¯ÎªÈÈ,¶øÈÈÈ´²»ÄÜÍêȫת»¯Îª¹¦¡£( ) 6.¾¹ýÈÎÒ»²»¿ÉÄæÑ»·¹ý³Ì,ϵͳµÄìØ±äµÈÓÚÁã,»·¾³µÄìØ±ä´óÓÚÁã¡££¨ £© 7.ºãκãѹÇÒ²»Éæ¼°·ÇÌå»ý¹¦µÄÌõ¼þÏ£¬Ò»ÇзÅÈÈÇÒìØÔö´óµÄ·´Ó¦¾ù¿É×Ô¶¯·¢Éú¡£ £¨ £© 8.±½ÓëÑõÔÚÒ»¸ÕÐÔ¾øÈÈÈÝÆ÷ÖÐȼÉÕ: C6H6(l) + 7.5O2(g) + 3H2O(g),´Ë¹ý³ÌµÄìØ±äСÓÚÁã¡£( ) 9.ÓÉͬһʼ̬³ö·¢£¬ÏµÍ³¾ÀúÒ»¸ö¾øÈȲ»¿ÉÄæ¹ý³ÌËùÄÜ´ïµ½µÄÖÕ̬Óë¾ÀúÒ»¸ö¾øÈÈ¿ÉÄæ¹ý³ÌËùÄÜ´ïµ½µÄÖÕ̬ÊDz»ÏàͬµÄ£¨ £©¡£ 10.ºãΡ¢ºãÈÝ¡¢·ÇÌå»ý¹¦ÎªÁãµÄ¿ÉÄæ¹ý³Ì,¡÷A=0( ) ¡£ 11.¸ôÀëϵͳµÄìØÊÇÊØºãµÄ£¨ £©¡£ 12.ÈÈÁ¦Ñ§»ù±¾·½³Ì£ºdG=-SdT+ Vdp¿ÉÊÊÓÃÓÚÈÎÒâ×é³É²»±äµÄ·â±Õϵͳ£¨ £©¡£ 13.¿Ë-¿Ë·½³ÌÒª±È¿ËÀÅåÁú·½³ÌµÄ¾«¶È¸ß ¡£( ) 14.´ÓìØµÄÎïÀíÒâÒåÀ´¿´£¬ÆøÌåÔÚ´ß»¯¼ÁÉϵÄÎü¸½¹ý³Ì¡÷S<0£¨ £©¡£ 15.ÈÈÁ¦Ñ§µÚ¶þ¶¨ÂɵĿËÀÍÐÝ˹˵·¨ÊÇ£ºÈÈ´ÓµÍÎÂÎïÌå´«¸ø¸ßÎÂÎïÌåÊDz»¿ÉÄܵġ£( ) 16.Ò»¶¨Á¿µÄÀíÏëÆøÌåµÄ½ÚÁ÷ÅòÕ͹ý³Ì, ¡÷A=¡÷G¡££¨ £© ?17.298.15KʱÎȶ¨Ì¬µÄµ¥ÖÊ£¬Æä±ê׼Ħ¶ûìØSm(B,Îȶ¨Ïà̬£¬298.15K)=0¡£( ) 18.ÔÚ»·¾³Ñ¹Á¦ºã¶¨Îª101.325kPa,ζÈΪ-10¡æÏµĹýÀäË®Äý¹Ì³É±ù,´Ë¹ý³Ì¡÷G<0.( ) Ñ¡ÔñÌâ´ð°¸£º 1.B; 2.D;3.A;4. C,B,C,A;5. B,A,B,A;6.B,B,B,B,A,C,C;7. B,B,B,C,A;8.B;9. C,A,A,A,A,B,C;10. A,A,A,A,A;B,A;11.A;12.C,C,A,A,C,C; 13.B; 14.A; 15.D; 16.D; 17.A;18.C;19.B;20D Ìî¿ÕÌâ´ð°¸£º 1. =£»2. ¡÷S£»3. <£» >£»<£»4. <£» >£»>£»5. =; =; > ;<£» <£»6.²»¿ÉÄܰÑÈÈ´ÓµÍÎÂÎïÌå´«µ½¸ßÎÂÎïÌå¶ø²»²úÉúÆäËüÓ°Ï죻7.²»¿ÉÄÜ´Óµ¥Ò»ÈÈÔ´ÎüÈ¡ÈÈÁ¿Ê¹Ö®Íêȫת»¯Îª¹¦¶ø²»²úÉúÆäËüÓ°Ï죻8. >;>;>;>; =£»9. ¾øÈÈ¿ÉÄæ¹ý³Ì»òÑ»·¹ý³Ì£»10. ´¿ÎïÖÊÍêÃÀ¾§ÌåµÄìØÖµ£¬0KʱΪÁ㣬Sm*(0K,ÍêÃÀ¾§Ìå)=0£»11. Äý¾ÛÏàĦ¶ûÌå»ýºöÂÔ²»¼Ç£»ÆøÌåÊÓΪÀíÏëÆøÌ壻¡÷Hm*ÊÓΪ³£Êý£»12. ϵͳ¾¾øÈȹý³ÌÓÉһ״̬µ½Áíһ״̬ìØÖµ²»¼õÉÙ£»13. ¡÷S=0;¡÷S>0£»14. ¿ÉÄæ£¬·ÇÌå»ý¹¦ÎªÁ㣻15. >£»16. =£¬<£»17. >£¬=£¬>£¬<£»18. ?p,?S,nCp,mnCV,m??S???V?;;19. <,<,>;20. ?p£»T£»V£» ?S£»-??£»??TT??p?T??S?pÅжÏÌâ´ð°¸£º 1.¡Á£»2.¡Á£»3. ¡Ì£»4.¡Ì£»5. ¡Ì£»6.¡Ì£»7.¡Ì£»8. ¡Á£»9.¡Ì£»10.¡Ì£»11. ¡Á£»12.¡Á£»13.¡Á£»14.¡Ì£»15.¡Á£»16. ¡Ì£»17.¡Á;18. ¡Ì ËÄ¡¢¼ÆËãÌâ 1. ʼ̬ΪT1=300K,p1=200kPaµÄij˫Ô×ÓÀíÏëÆøÌå1mol,¾ÏÂÁв»Í¬Í¾¾¶±ä»¯µ½ T2=300K,p2=100kPaµÄĩ̬£¬Çó¸÷²½Ö輰;¾¶µÄQ,¡÷S¡£ (1) ºãοÉÄæÅòÕÍ£» (2) ÏȺãÈÝÀäÈ´ÖÁʹѹÁ¦½µÖÁ100kPa,ÔÙºãѹ¼ÓÈÈÖÁT2; (3) ÏȾøÈÈ¿ÉÄæÅòÕ͵½Ê¹Ñ¹Á¦½µÖÁ100kPa£¬ÔÙºãѹ¼ÓÈÈÖÁT2. 1mol double atomic perfect gas from the initial state of 300K, 200kPa through the following different paths to the final state of 300K, 100kPa. Calculate Q,W,¡÷U, ¡÷H of each step and paths. (1) Expands isothermal reversible. (2) Firstly isochoricly cooled to decrease the pressure to 100kPa, then isobaricly heated to T2. (3) Adiabatic reversible expands to decrease the pressure to 100kPa, then isobaricly heated to T2. ´ð°¸£º(1) Q=1.729kJ, ¡÷S=5.76J/K;(2) Q1=-3.118kJ, ¡÷S1=-14.41J/K , Q2=-4.365kJ, ¡÷S2=20.17J/K, Q=1.247kJ, ¡÷S=5.76J/K (3) Q1=0kJ, ¡÷S1=0J/K , Q2= Q=0.224 kJ, ¡÷S=¡÷S2=5.76J/K 2. 1molÀíÏëÆøÌåÔÚ300KÏ£¬´Óʼ̬100kPa¾ÏÂÁи÷¹ý³Ì£¬ÇóQ,¡÷S¼°¡÷Siso¡£ (1) ¿ÉÄæÅòÕ͵½Ä©Ì¬Ñ¹Á¦50kPa£» (2) ·´¿¹ºã¶¨Íâѹ50kPa²»¿ÉÄæÅòÕÍÖÁƽºâ̬; (3) ÏòÕæ¿Õ×ÔÓÉÅòÕÍÖÁÔÌå»ýµÄ2±¶. At 300K, 1 mol perfect gas from the initial state of 100kPa through the following different paths to final state. Calculate Q,¡÷S and ¡÷Siso of each paths. (1) Reversible expands to 50kPa. (2) Irreversible expands against an external constant pressure of 50 kPa to equilibrium state. (3) Free expansion to vacuum until twice to it¡¯s initial volume. ´ð°¸£º(1) Q=1.729kJ, ¡÷S=5.763J/K£¬¡÷Siso=5.76J/K;(2) Q=1.247kJ, ¡÷S=5.763J/K£¬¡÷Siso=1.606J/K; (3) Q=0kJ, ¡÷S=5.763J/K£¬¡÷Siso=5.763J/K 3. 4molµ¥Ô×ÓÀíÏëÆøÌå´Óʼ̬750K,150kPa,ÏȺãÈÝÀäȴʹѹÁ¦½µÖÁ50kPa,ÔÙºãοÉÄæÑ¹ËõÖÁ100kPa¡£ÇóÕû¸ö¹ý³ÌµÄQ,W,¡÷U£¬¡÷H¼°¡÷S¡£ 4 mol single atomic perfect gas£¬from the initial state of 750K,150kPa is firstly isochoricly cooled to decrease the pressure to 50 kPa, then isothermal reversible compressed to 100 kPa .Calculate W, Q,¡÷U, ¡÷H and ¡÷S of the whole process. ´ð°¸£ºQ£½-30.71kJ,W=5.763kJ,¡÷U=-24.94kJ£¬¡÷H=-41.57kJ,¡÷S=-77.86J/K 4. 5molµ¥Ô×ÓÀíÏëÆøÌå´Óʼ̬300K, 50kPa,ÏȾøÈÈ¿ÉÄæÑ¹ËõÖÁ100kPa, ÔÙºãѹÀäȴʹÌå»ýËõСÖÁ85dm3¡£ÇóÕû¸ö¹ý³ÌµÄQ,W,¡÷U£¬¡÷H¼°¡÷S¡£ 5 mol single atomic perfect gas£¬from the initial state of 300K, 50kPa is firstly adiabatical reversible compressed to 100 kPa, then isobaricly cooled to decrease the volume to 85dm3 .Calculate W, Q,¡÷U, ¡÷H and ¡÷S of the whole process. ´ð°¸£ºQ£½-19.892kJ,W=13.935kJ,¡÷U=-5.958kJ£¬¡÷H=-9.930kJ,¡÷S=-68.66J/K 5. ¼×´¼ÔÚ101.325kPaϵķе㣨Õý³£·Ðµã£©Îª64.65¡æ£¬ÔÚ´ËÌõ¼þϵÄĦ¶ûÕô·¢ìÊ ?vapHm?35.32kJ?mol?1¡£ÇóÔÚÉÏÊöζÈѹÁ¦Ï£¬1kg¼×´¼È«²¿³ÉΪ¼×´¼ÕôÆøÊ±µÄ Q,W,¡÷U£¬¡÷H£¬¡÷S,¡÷A¼°¡÷G At 101.325kPa, the boiling point of CH3OH is 64.65¡æ, ?vapHm?35.32kJ?mol at this condition. Calculate Q,W,¡÷U,¡÷H£¬¡÷S,¡÷A and ¡÷G of the following process: 1kg CH3OH (l, 64.65¡æ,101.325kPa)¡úCH3OH (g, 64.65¡æ,101.325kPa) ´ð°¸£ºQ£½¡÷H£½1102.65kJ,W=-87.65kJ,¡÷U=1014.65kJ£¬¡÷S=3.263kJ/K£¬¡÷A=-86.58kJ£¬¡÷G=0 6. ÒÑ֪ˮµÄ·ÐµãÊÇ100¡æ£¬Ä¦¶û¶¨Ñ¹ÈÈÈÝCp,m?H2O,l??75.20J?mol?K,Æû»¯ ?1?1?1ìÊ?vapHm?40.67kJ?mol£¬Ë®ÆøÄ¦¶û¶¨Ñ¹ÈÈÈÝ ?1Cp,m?H2O,g??33.57J?mol?1?K?1(Ħ¶û¶¨Ñ¹ÈÈÈÝ¿ÉÊÓΪÓëζÈÎÞ¹Ø)£¬Çó¹ý³Ì£º 1molH2O(l,60¡æ,101325Pa) ¡ú1molH2O(g,60¡æ,101325Pa)µÄQ,W,¡÷U£¬¡÷H£¬¡÷S,¡÷A¼°¡÷G Given the boiling point of water is 100¡æ, Cp,m?H2O,l??75.20J?mol?K, ?1?1?vapHm?40.67kJ?mol?1, Cp,m?H2O,g??33.57J?mol?1?K?1( don¡¯t change with temperature), Calculate Q,W,¡÷U£¬¡÷H£¬¡÷S,¡÷A and ¡÷G of the following process: 1molH2O(l,60¡æ,101325Pa) ¡ú1molH2O(g,60¡æ,101325Pa) ´ð°¸£ºQ£½¡÷H£½42.34kJ,W=-2.77kJ,¡÷U=39.57kJ£¬¡÷S=113.7J/K,¡÷A=1.69kJ£¬¡÷G=4.06kJ 7. ÒÑÖª1mol¡¢-5¡æ¡¢100kPaµÄ¹ýÀäÒºÌå±½ÍêÈ«Äý¹ÌΪ£5¡æ¡¢100kPa¹Ì̬±½µÄìØ±ä»¯Îª-35.5J/K,¹Ì̬±½ÔÚ£5¡æÊ±µÄÕôÆøÑ¹Îª2280Pa,Ħ¶ûÈÛ»¯ìÊΪ9874J/mol¡£¼ÆËã¹ýÀäҺ̬±½ÔÚ£5¡æÊ±µÄÕôÆøÑ¹¡£ Given that ¡÷S of the process 1molC6H6(l,-5¡æ,100kPa) ¡ú1molC6H6 (s,-5¡æ, 100kPa), ´ð°¸£º2680Pa 8. 4molÀíÏëÆøÌå´Ó300K¡¢p?ºãѹ¼ÓÈȵ½600K,Çó´Ë¹ý³ÌµÄQ¡¢W¡¢¡÷U¡¢¡÷H¡¢¡÷S¡¢ ?¡÷A¡¢¡÷G¡£ÒÑÖª´ËÀíÏëÆøÌåµÄSm(300K)=150.0J¡¤K-1¡¤mol-1£¬Cp,m =30.00J¡¤K-1¡¤mol-1 4 mol perfect gas from the initial state of 300K, p? isobaricly heated to 600K. Calculate Q,W,¡÷U,¡÷H,¡÷S,¡÷A and ¡÷G of the process. Given for the perfect gas ?(300K)=150.0J¡¤K-1¡¤mol-1£¬Cp,m =30.00J¡¤K-1¡¤mol-1.Sm´ð°¸£º¡÷U=26.02kJ; ¡÷H=Q=36.0kJ;W=-9.978kJ; ¡÷S=83.18J/K;¡÷A=-203.9kJ; ¡÷G=-193.9kJ 9. 8molij˫Ô×ÓÀíÏëÆøÌåÓÉʼ̬(400K,0.20MPa)·Ö±ð¾ÏÂÁÐÈý¸ö²»Í¬¹ý³Ì±äµ½¸Ã¹ý³ÌÖ¸¶¨µÄÖÕ̬£¬·Ö±ð¼ÆËã¸÷¹ý³ÌµÄQ,W,¡÷U;¡÷H;¡÷S;¡÷A;¡÷G. ¹ý³Ì¢ñ£ººãοÉÄæÅòÕ͵½0.10MPa; ¢ò: ×ÔÓÉÅòÕ͵½0.10MPa; ¢ó: ºãÎÂ϶Կ¹ºãÍâѹ0.10MPaÅòÕ͵½Æ½ºâ 8 mol double atomic perfect gas from the initial state of 400K,0.20MPa through the following three different paths to given final state. Calculate Q,W,¡÷U;¡÷H;¡÷S;¡÷A;¡÷Gof each paths. (1) Isothermal reversible expands to 0.10MPa. (2) Free expands to 0.10MPa. (3) Isothermal expands against an external constant pressure of 0.10MPa to equilibrium. ´ð°¸£º ¹ý³Ì ¢ñ ¢ò ¢ó W/kJ -18.41 0 -6.65 Q/kJ 18.41 0 6.65 ¡÷U/kJ 0 0 0 ¡÷H/kJ 0 0 0 ¡÷S/kJ 46. 10 46.10 46.10 ¡÷A/kJ -18.44 -18.44 -18.44 ¡÷G/kJ -18.44 -18.44 -18.44 3 10. ½«×°ÓÐ0.1molÒÒÃÑÒºÌåµÄ΢С²£Á§Æ¿·ÅÈëÈÝ»ýΪ10dmµÄºãÈÝÃܱյÄÕæ¿ÕÈÝÆ÷ÖÐ,²¢ÔÚ35.51¡æµÄºãβÛÖкãΡ£35.51¡æÎªÔÚ101.325kPaÏÂÒÒÃѵķе㡣ÒÑÖªÔÚ´ËÌõ¼þÏÂÒÒÃѵÄĦ¶ûÕô·¢ìÊΪ25.10kJ/mol¡£½ñ½«Ð¡²£Á§Æ¿´òÆÆ£¬ÒÒÃÑÕô·¢ÖÁƽºâ̬£¬Ç󣺣¨1£©ÒÒÃÑÕôÆøµÄѹÁ¦£»£¨2£©¹ý³ÌµÄW,Q,¡÷U,¡÷H,¡÷S,¡÷G,¡÷A¡£ ´ð°¸£ºP=25.664kPa;W=0J;Q=¡÷U=2.254kJ;¡÷H=2.51kJ;¡÷S=9.275J/K; ¡÷A=-0.61kJ;¡÷G=-0.353kJ 3 11.½«×°ÓÐ0.1molÒÒÃÑÒºÌåµÄ΢С²£Á§ÅÝ·ÅÈë35¡æ¡¢101325Pa¡¢10dmµÄ±£ÎÂÆ¿ÖÐ,ÆäÖгäÂúN2(g),½«Ð¡²£Á§ÅÝ´òËéºó,ÒÒÃÑÈ«²¿Æû»¯,ÐγɵĻìºÏÆøÌå¿ÉÊÓΪÀíÏëÆøÌå¡£ÒÑÖªÒÒÃÑÔÚ101325PaʱµÄÕý³£·ÐµãΪ35¡æ,ÆäÆû»¯ìÊΪ25.10kJ/mol¡£¼ÆË㣨1£©»ìºÏÆøÖÐÒÒÃѵķÖѹ£»£¨2£©µªÆøµÄ¡÷H,¡÷S,¡÷G£»£¨3£©ÒÒÃѵġ÷H,¡÷S,¡÷G ´ð°¸£º(1)P=25.664kPa;(2)¡÷U=0kJ;¡÷H=0kJ;¡÷G=0kJ£» (3)¡÷S=9.275J/K;¡÷H=2510kJ;¡÷G=-0.353kJ 12.ÒÑÖª298KʱʯīºÍ½ð¸ÕʯµÄ±ê׼Ħ¶ûȼÉÕìÊ·Ö±ðΪ-393.511kJ/molºÍ-395.407kJ/mol£¬±ê׼Ħ¶ûìØ·Ö±ðΪ5.694J?K?1?mol?1ºÍ2.439J?K?1?mol?1£¬Ìå»ý ?ÖÊÁ¿·Ö±ðΪ2.260ºÍ3.520g/cm3¡££¨1£©¼ÆËãC(ʯī) ¡úC(½ð¸Õʯ)µÄ?rGm?298K?; (2)25¡æÊ±Ðè¶à´óѹÁ¦ÄÜʹÉÏÊöת±ä³ÉΪ¿ÉÄÜ£¨Ê¯Ä«ºÍ½ð¸ÕʯµÄѹËõϵÊý¾ù¿É½üËÆÊÓΪÁ㣩 ??Given at 298K, ?cHm(C, graphite)= -393.51kJ/mol, ?cHm (C, diamond)= ?-395.407kJ/mol, Sm( C, graphite)= 5.694J?K?1??mol?1,Sm( C, diamond)= 2.439J?K?1?mol?1, ¦Ñ( C, graphite)= 2.260g/cm3, ¦Ñ( C, diamond)= 3.520g/cm3. (1) Calculate ?rGm?298K? of this process: C(graphite) ¡úC(diamond); ?(2) How to control pressure to make the above change realized. ´ð°¸£º(1) 2.867kJ/mol; (2) p>1.51¡Á109Pa 13£® ÒÑ֪ˮÔÚ77¡æÊ±µÄ±¥ºÍÕôÆøÑ¹Îª41.891kPa,Ë®ÔÚ101.325kPaϵÄÕý³£·ÐµãΪ100¡æ,Çó: (1) ÏÂÃæ±íʾˮµÄÕôÆøÑ¹ÓëζȹØÏµµÄ·½³ÌʽÖеÄAºÍBÖµ; lg?pPa???AT?B (2) ÔÚ´Ëζȷ¶Î§ÄÚË®µÄĦ¶ûÕô·¢ìÊ; (3) ÔÚ¶à´óѹÁ¦ÏÂË®µÄ·ÐµãΪ105¡æ£® Given that saturated vapor pressure of water is 41.891kPa at 77¡æ.Normal boiling point of water is 100¡æ under 101.325kPa. Please calculate: (1) The value A and B below expressing the relationship of water vapor pressure with temperature. lg?pPa???AT?B (2) Molar vapor enthalpy in this temperature scope. (3) How much the pressure when boiling point of water is 105¡æ£® ´ð°¸ (1) A=2179.133K,B=10.8455; (2) 41.719kJ/mol;(3) 121.042kPa 14.Ë®ºÍÂÈ·ÂÔÚ101.325kPaϵÄÕý³£·Ðµã·Ö±ðΪ100¡æºÍ61.5¡æ,Ħ¶ûÕô·¢ìÊ·Ö±ðΪ ?vapHm?H2O??40.668kJ?mol?1ºÍ?vapHm?CHCl3??29.50kJ?mol?1,ÇóÁ½ÒºÌå ¾ßÓÐÏàͬ±¥ºÍÕôÆøÑ¹Ê±µÄζÈ. The normal boiling point of H2O and CH3Cl are 100¡æ and 61.5¡æ respectively, ?vapHm?H2O??40.668kJ?mol?1 and ?vapHm?CHCl3??29.50kJ?mol?1, Calculate the temperature when the two liquid has the same saturated pressure. ´ð°¸:262.9¡æ µÚËÄÕ ¶à×é·ÖÈÈÁ¦Ñ§ Ò»¡¢Ñ¡ÔñÌâ **1. ÔÚÒ»¶¨µÄζÈTÏÂ,ÓÉ´¿ÒºÌ¬AºÍBÐγÉÀíÏëҺ̬»ìºÏÎï,ÒÑÖªpA,µ±Æø-ÒºÁ½?pBÏà´ïµ½Æ½ºâʱ,ÆøÏà×é³ÉyB×ÜÊÇ( )ÒºÏà×é³ÉxB¡£ (A) > (B) < (C) = (D)ÎÞ·¨È·¶¨ 2.ÔÚ?¡¢?Á½ÏàÖж¼º¬ÓÐAºÍBÁ½ÖÖÎïÖÊ£¬µ±´ïµ½ÏàÆ½ºâʱ£¬ÏÂÁÐÈýÖÖÇé¿öÕýÈ·µÄÊÇ£º £¨ £© ¦Á (A?)A??¦ÁB ? ¦Á(B)¦Â?AA? C B ) (D) ÎÞ·¨È·¶¨ ¦Á ? A ? ¦Â(?3.ÔÚºãΡ¢ºãѹÏÂ,ÓÉAºÍBÐγÉÀíÏëҺ̬»¯ºÏÎïµÄ¹ý³ÌµÄ?mixUºÍ?mixA£¨ £© (A)?mixU=0£¬?mixA<0 (B)?mixU<0£¬?mixA=0 (C) ?mixU>0£¬ ?mixA>0 (D) ?mixU=0£¬?mixA>0 4.150¡æ£¬101 325PaµÄҺ̬H2O(l)µÄ»¯Ñ§ÊÆ?l£¬ 150¡æ£¬101325PaµÄÆøÌ¬H2O(g)µÄ»¯Ñ§ÊÆ?g £¬¶þÕߵĹØÏµÎª£¨ £© (A) ?l > ?g (B) ?l < ?g (C) ?l = ?g (D) ÎÞ·¨È·¶¨ 5.ijÎïÖÊÈÜÓÚ»¥²»ÏàÈܵÄÁ½ÒºÏà?ºÍ?ÖУ¬¸ÃÎïÖÊÔÚ?ÏàÒÔA2µÄÐÎʽ´æÔÚ£¬ÔÚ?ÏàÒÔAÐÎʽ´æÔÚ£¬Ôò¶¨Î¶¨Ñ¹Ï£¬Á½ÏàÆ½ºâʱ£¨ £© (A)?¦Á(A2)??¦Â(A) (B)?¦Á(A2)?2?¦Â(A) (C)2?¦Á(A2)??¦Â(A) (D) ÎÞ·¨È·¶¨ 6.Ï¡ÈÜÒºµÄÄý¹ÌµãTfÓë´¿ÈܼÁTf*µÄÄý¹Ìµã±È½Ï£¬Tf (A)ÈÜÖʱØÐëÊǻӷ¢Ð﵀ (B)Îö³öµÄ¹ÌÏàÒ»¶¨ÊǹÌÈÜÌå (C)Îö³öµÄ¹ÌÏàÊÇ´¿ÈܼÁ (D)Îö³öµÄ¹ÌÏàÊÇ´¿ÈÜÖÊ 7. 25¡æÊ±AºÍBÁ½ÖÖÆøÌåÔÚijһÈܼÁÖÐÈܽâµÄºàÀûϵÊý·Ö±ðΪkx,AºÍkx,B,ÇÒÖªkx,A>kx,B,Ôòµ±AºÍBѹÁ¦ÏàͬʱÔÚÈܼÁÖÐËùÈܽâµÄÁ¿ÊÇ( )¡£ (A)AµÄÁ¿´óÓÚBµÄÁ¿ (B) AµÄÁ¿Ð¡ÓÚBµÄÁ¿ (C) AµÄÁ¿µÈÓÚBµÄÁ¿ (D) ÎÞ·¨È·¶¨ 8.ÔÚÒ»¶¨Ñ¹Á¦Ï£¬´¿ÎïÖÊAµÄ·Ðµã¡¢ÕôÆøÑ¹ºÍ»¯Ñ§ÊÆ·Ö±ðΪTb*¡¢pA*ºÍ?A*£¬¼ÓÈëÉÙÁ¿²»»Ó·¢ÐÔµÄÈÜÖÊÐγÉÈÜÒºÖ®ºó·Ö±ð±ä³ÉTb¡¢ pAºÍ?A £¬Òò´ËÓУ¨ £© (A) Tb*< Tb£¬pA*< pA£¬, ?A* Tb£¬pA*> pA£¬, ?A* >?A (C) Tb*> Tb£¬pA*< pA£¬ , ?A* >?A (D) Tb*< Tb£¬pA*> pA£¬ , ?A* >?A 9.ÒÑÖª»·¼ºÍé¡¢´×Ëá¡¢ÝÁ¡¢ÕÁÄÔµÄÄý¹Ìµã½µµÍϵÊýkf·Ö±ðÊÇ20.2¡¢9.3¡¢6.9¼°39.7K¡¤kg¡¤mol-1¡£½ñÓÐһδ֪ÎïÄÜÔÚÉÏÊöËÄÖÖÈܼÁ×ÅÈܽ⣬Óû²â¶¨¸Ãδ֪ÎïµÄÏà¶Ô·Ö×ÓÖÊÁ¿£¬×îÊÊÒ˵ÄÈܼÁÊÇ£¨ £© (A)ÝÁ (B)ÕÁÄÔ (C) »·¼ºÍé (D)´×Ëá 10.ÒÑÖª35¡æÊ±´¿±ûͪµÄ±¥ºÍÕôÆøÑ¹Îª43kPa,µ±ÂȷµÄĦ¶û·ÖÊýΪ0.30ʱ,²âµÃ±ûͪ-ÂÈ·ÂÈÜÒºÆøÒºÆ½ºâʱ±ûͪµÄÕôÆøÑ¹Îª26.8kPa,Ôò´ËÈÜҺΪ£¨ £© (A)ÀíÏëҺ̬»ìºÏÎï (B)¶Ô±ûͪΪ¸ºÆ«²î (C)¶Ô±ûͪΪÕýÆ«²î (D)ÎÞ·¨ÅÐ¶Ï 11.¶þ×é·ÖÀíÏëҺ̬»ìºÏÎïµÄÕôÆø×Üѹ£¨ £© (A)ÓëÈÜÒºµÄ×é³ÉÎÞ¹Ø (B)½éÓÚÁ½´¿×é·ÖµÄÕôÆøÑ¹Ö®¼ä (C) ´óÓÚÈÎÒ»´¿×é·ÖµÄÕôÆøÑ¹ (D)СÓÚÈÎÒ»´¿×é·ÖµÄÕôÆøÑ¹ 12.AºÍBÁ½×é·ÖÔÚ¶¨Î¶¨Ñ¹Ï»ìºÍÐγÉÀíÏëҺ̬»ìºÏÎïʱ£¬ÔòÓУº£¨ £©¡£ (A) ?mixH=0 (B) ?mixS=0 (C) ?mixA=0 (D) ?mixG=0 13.Ö¸³ö¹ØÓÚºàÀû¶¨ÂɵÄÏÂÁм¸µã˵Ã÷ÖУ¬´íÎóµÄÊÇ£¨£© (A)ÈÜÖÊÔÚÆøÏàºÍÔÚÈܼÁÖеķÖ×Ó״̬±ØÐëÏàͬ (B)ÈÜÖʱØÐëÊǷǻӷ¢Ð﵀ (C)ζÈÓú¸ß»òѹÁ¦ÓúµÍ£¬ÈÜÒºÓúÏ¡£¬ºàÀû¶¨ÂÉÓú׼ȷ (D)¶ÔÓÚ»ìºÏÆøÌ壬ÔÚ×ÜѹÁ¦²»Ì«´óʱ£¬ºàÀû¶¨ÂÉÄÜ·Ö±ðÊÊÓÃÓÚÿһÖÖÆøÌ壬ÓëÆäËûÆøÌåµÄ·ÖѹÎÞ¹Ø 14.40¡æÊ±£¬´¿ÒºÌåAµÄ±¥ºÍÕôÆøÑ¹ÊÇ´¿ÒºÌåBµÄÁ½±¶£¬×é·ÖAºÍBÄܹ¹³ÉÀíÏëҺ̬»ìºÏÎï¡£ÈôƽºâÆøÏàÖÐ×é·ÖAºÍBµÄĦ¶û·ÖÊýÏàµÈ£¬ÔòƽºâÒºÏàÖÐ×é·ÖAºÍBµÄĦ¶û·ÖÊýÖ®±ÈxA:xB=( ) (A)1:2 (B) 2:1 (C)3:2 (D)4:3 15.×é·ÖAºÍBÐγÉÀíÏëҺ̬»ìºÏÎï¡£ ÒÑÖªÔÚ100¡æÊ±´¿×é·ÖAµÄÕôÆøÑ¹Îª133.32kPa£¬´¿×é·ÖBµÄÕôÆøÑ¹Îª66.66kPa£¬µ±AºÍBµÄÁ½×é·ÖҺ̬»ìºÏÎïÖÐ×é·ÖAµÄĦ¶û·ÖÊý Ϊ0.5ʱ£¬ÓëҺ̬»ìºÏÎï³ÉƽºâµÄÕôÆøÖУ¬×é·ÖAµÄĦ¶û·ÖÊýÊÇ£¨ £© (A) 1 (B) ? (C)2/3 (D) 1/2 16.ÔÚ25¡æÊ±£¬0.01mol¡¤dm-3ÌÇË®µÄÉøÍ¸Ñ¹Á¦Îª¦°1,0.01mol¡¤dm-3ʳÑÎË®µÄÉøÍ¸Ñ¹Îª¦°2,Ôò ( )¡£ (A)¦°1£¾¦°2 (B) ¦°1£½¦°2 (C) ¦°1£¼¦°2 (D) ÎÞ·¨±È½Ï 17.Âȷ£¨1£©ºÍ±ûͪ£¨2£©ÐγɷÇÀíÏëҺ̬»ìºÏÎÔÚTʱ£¬²âµÃ×ÜÕôÆøÑ¹Îª29 398Pa£¬ÕôÆøÖбûͪµÄĦ¶û·ÖÊýy2=0.818£¬¶ø¸ÃζÈÏ´¿Âȷµı¥ºÍÕôÆøÑ¹Îª29 571Pa£¬ÔòÔÚÒºÏàÖÐÂȷµĻî¶Èa1Ϊ £¨ £© (A) 0.500 (B) 0.823 (C)0.181 (D) 0.813 18 ÔÚÒ»¶¨Î¶ȡ¢Ñ¹Á¦Ï£¬AºÍBÐγÉÀíÏëҺ̬»ìºÏÎƽºâʱҺÏàÖеÄĦ¶û·ÖÊýxA/ xB=5£¬ÓëÈÜÒº³ÉƽºâµÄÆøÏàÖÐAµÄĦ¶û·ÖÊýyA=0.5£¬ÔòA¡¢BµÄ±¥ºÍÕôÆøÑ¹Ö®±ÈΪ£¨ £© (A) 5 (B) 1 (C)0.2 (D) 0.5 19.ÏÂÁи÷ʽÖÐ,ÄÄÒ»¸ö²»ÊÇ»¯Ñ§ÊÆ? (A) ???H? (B) ??n?B?S,p,nC??U? (C) ???n?B?S,V,nC??G? (D) ???n?B?T,p,nC??A? ???n?B?T,p,nC20. ÏÂÁи÷ʽÖÐ,ÄÄÒ»¸ö²»ÊÇÆ«Ä¦¶ûÁ¿? (A) ???H? (B) ???nB?T,p,nC??U? (C) ????nB?S,V,nC??G? (D) ????nB?T,p,nC??A? ????nB?T,p,nC¶þ¡¢Ìî¿Õ 1.·ÐµãÉý¸ß¹«Ê½¡÷Tb=KbbBÊÊÓÃÓÚ£¨ £©µÄÈÜÖʵģ¨ £©ÈÜÒº¡£ 2. 25¡æÊ±£¬CH4 (g)ÔÚH2O(l)ºÍC6H6 (l)ÖеĺàÀûϵÊý·Ö±ðΪ4.18?109PaºÍ57?106Pa £¬ÔòÔÚÏàͬµÄƽºâÆøÏà·Öѹp(CH4)Ï£¬CH4ÔÚË®ÖÐÆ½ºâ×é³É£¨ £©ÔÚ±½ÖÐµÄÆ½ºâ×é³É¡£(Ìî>,<»ò=) 3.Ï¡ÈÜÒºµÄÒÀÊýÐÔ·Ö±ðÊÇ:£¨ £©,( ),( ),( )¡£ 4.ÔÚζÈTʱij´¿ÒºÌåAµÄÕôÆøÑ¹Îª11.73kPa£¬µ±·Ç»Ó·¢ÐÔ×é·ÖBÈÜÓÚAÖУ¬ÐγÉxA=0.800µÄҺ̬»ìºÏÎïʱ£¬ÒºÌ¬»ìºÏÎïÖÐAµÄÕôÆøÑ¹Îª5.33kPa£¬ÒÔ´¿ÒºÌåAΪ ±ê׼̬£¬Ôò×é·ÖAµÄ»î¶ÈΪ( )£¬»î¶ÈÒò×ÓΪ( )¡£ 5.ÀíÏëÆøÌå»ìºÏÎïÖÐÈÎÒ»×é·ÖBµÄ±í´ïʽΪ£º?B =( )¡£ 6.50¡æÊ±£¬ÒºÌåAµÄ±¥ºÍÕôÆøÑ¹ÊÇÒºÌåBµÄ±¥ºÍÕôÆøÑ¹µÄ3±¶£¬AºÍB¹¹³ÉÀíÏëҺ̬»ìºÏÎï¡£ÆøÒºÆ½ºâʱ£¬ÒºÏàÖÐAµÄĦ¶û·ÖÊýΪ0.5£¬ÔòÔÚÆøÏàÖÐBµÄĦ¶û·ÖÊýΪ( )¡£ 7 д³öÀíÏëÏ¡ÈÜÒºÖÐÈܼÁAµÄ»¯Ñ§ÊƱí´ïʽ£º?A ==( )¡£ 8. 0¡æ£¬101.325kPaѹÁ¦Ï£¬O2 (g)ÔÚË®ÖеÄÈܽâ¶ÈΪ4.49¡Á10-2dm3¡¤kg-1£¬Ôò0¡æÊ±O2 (g)ÔÚË®ÖеĺàÀûϵÊýΪkx (O2)=( )Pa¡£ 9.ÔÚÒ»¶¨µÄζȺÍѹÁ¦ÏÂijÎïÖÊ񼮿Á½Ïà´ïµ½Æ½ºâ£¬ÔòÁ½ÏàµÄ»¯Ñ§ÊÆ?B£¨l£©Óë?B£¨g£© ( )£»Èôά³ÖѹÁ¦Ò»¶¨£¬Éý¸ßζȣ¬Ôò?B(l)Óë?B(g)¶¼ËæÖ®( )£»µ«?B(l)±È?B(g)( )¡£ 10. ij¾ùÏàϵͳÓÉ×é·ÖAºÍB×é³É£¬ÔòÆäƫĦ¶ûÌå»ýµÄ¼ª²¼Ë¹-¶Åº¥Ä··½³ÌÊÇ( ). 10.ÔÚºãΡ¢ºãѹÏ£¬ÀíÏëÆøÌå»ìºÏÎï»ìºÏ¹ý³ÌµÄQ=( ), 11. ƫĦ¶ûìØµÄ¶¨ÒåʽΪ( )¡£ 12 Õý¼ºÍé-ÕýÐÁÍé¡¢±ûͪ-ÂÈ·Â,ÒÒ´¼-Ë®¡¢Ë®-ÑÎËáËÄ×é»ìºÏÎï»òÈÜÒºÖУ¬¿É¿´³ÉÀíÏëҺ̬»ìºÏÎïµÄÊÇ( )¡£ 13 ¶ÔÓÚÀíÏëÏ¡ÈÜÒº£¬ÔÚÒ»¶¨Î¶ÈÏÂÈÜÖÊBµÄÖÊÁ¿Ä¦¶ûŨ¶ÈΪbB£¬ÔòBµÄ»¯Ñ§ÊƱí´ïʽΪ ( )¡£ 14.ÔÚ300KºÍƽºâ״̬Ï£¬Ä³×é³ÉΪxB=0.72 »ìºÏÎïÉÏ·½BµÄÕôÆøÑ¹ÊÇ´¿BµÄ±¥ºÍÕôÆøÑ¹µÄ60%£¬ÄÇô£º(i)BµÄ»î¶ÈÊÇ; (ii)BµÄ»î¶ÈÒò×ÓÊÇ ¡£ 15 Ò»°ã¶øÑÔ£¬ÈܼÁµÄÄý¹Ìµã½µµÍϵÊýkfÓë ºÍ ³ÉÕý±È£¬Óë ³É·´±È£¬¶øÈÜÒºµÄÄý¹Ìµã½µµÍÖµ?TfÖ»Óë ³ÉÕý±È¡£ 16. ij·Ç»Ó·¢ÐÔÈÜÖʵÄÈÜҺͨ¹ý°ë͸ĤÓë´¿ÈܼÁ´ïÉøÍ¸Æ½ºâ£¬Ôò´ËʱÈÜÒºµÄÕôÆøÑ¹Ò»¶¨ ´¿ÈܼÁµÄÕôÆøÑ¹¡£ 17 ¾ùÏà¶à×é·ÖϵͳÖУ¬×é·ÖBµÄƫĦ¶ûÌå»ý¶¨ ÒåVBΪ ¡£ 18 È˵ÄѪ½¬¿ÉÊÓΪϡÈÜÒº,ÆäÄý¹ÌµãΪ-0.56¡æ,ÒÑ֪ˮµÄÄý¹Ìµã½µµÍ³£Êýkf=1.86 K?mol-1?kg,Ôò37¡æÊ±Ñª½¬µÄÉøÍ¸Ñ¹ ¡£ 19.ÔÚ101.325kPaµÄ´óÆøÑ¹Ï£¬½«ÕáÌÇÔÚË®ÖеÄÏ¡ÈÜÒº»ºÂýµÄ½µÎ£¬Ê×ÏÈÎö³öµÄΪ´¿±ù£¬Ïà¶ÔÓÚ´¿Ë®¶øÑÔ£¬¼ÓÈëÕáÌǽ«»á³öÏÖ£ºÕôÆøÑ¹£¨ £©£»·Ðµã£¨ £©£»Äý¹Ìµã£¨ £©¡£ Èý¡¢ÅжÏÌâ 1.ÔÚ¹ý±¥ºÍÈÜÒºÖÐ,ÈÜÖʵĻ¯Ñ§ÊƱÈͬÎÂͬѹÏ´¿ÈÜÖʵĻ¯Ñ§ÊƸß.( ) 2.ÔÚ273.15K,200kPaÏÂ,Ë®µÄ»¯Ñ§ÊƱȱùµÄ»¯Ñ§ÊƸߡ££¨ £© 3. ÔÚ373.15K,200kPaÏÂ,Ë®µÄ»¯Ñ§ÊƱÈË®ÕôÆøµÄ»¯Ñ§ÊƸߡ£¡££¨ £© 4.µÍѹÏÂ,ºàÀûϵÊýkµÄ´óСÓëÈܼÁ¡¢ÈÜÖʵÄÐÔÖÊÓйØ,ÓëζÈÓйأ¬ÓëÈÜÒºµÄŨ¶Èµ¥Î»Óйء£( ) 5.ÔÚÏàͬµÄζȺÍѹÁ¦Ï£¬Ï¡ÈÜÒºµÄÉøÍ¸Ñ¹½öÓëÈÜÒºÖÐÈÜÖʵÄŨ¶ÈÓйضøÓÚÈÜÖʵÄÐÔÖÊÎ޹أ¬Òò´Ë£¬Í¬Îª0.01mol/KgµÄÆÏÌÑÌÇË®ÈÜÒºÓëʳÑÎË®ÈÜÒºµÄÉøÍ¸Ñ¹Ïàͬ¡££¨ £© 6.ÔÚÒ»¶¨Î¶ÈÏÂ,ijÀíÏëÏ¡ÈÜÒºÖÐÈÜÖʵĻ¯Ñ§ÊÆ¿ÉÓÃÏÂÁз½³Ì±íʾ£º ?????B???x,B?RTlnxB??b,B?RTln?bB/b????c,B?RTln?cB/c?¡£ ÒÔÉϸ÷?x,B,?c,BºÍ?b,BµÄ´óСºÍÎïÀíÒâÒåÏàͬ¡££¨ £© 7.ÀíÏëÒºÌå»ìºÏÎïÓëÆäÕôÆø´ï³ÉÆø-ÒºÁ½ÏàÆ½ºâʱ,ÆøÏà×ÜѹÁ¦pÓëÆø×é³ÉyB³ÊÏßÐÔ¹ØÏµ¡£( ) ???8.ÀíÏëÆøÌå»ìºÏÎïÖÐÈÎÒ»×é·ÖBµÄÒݶȾ͵ÈÓÚÆø·ÖѹÁ¦pB.( ) 9.ÒòΪÈÜÈëÁËÈÜÖÊ£¬¹ÊÈÜÒºµÄÄý¹ÌµãÒ»¶¨µÍÓÚ´¿ÈܼÁµÄÄý¹Ìµã¡££¨ £© 10.ÈܼÁÖÐÈÜÈë»Ó·¢ÐÔµÄÈÜÖÊ£¬¿Ï¶¨»áÒýÆðÈÜÒºµÄÕôÆøÑ¹Éý¸ß¡££¨ £©¡£ 11.ÈçͬÀíÏëÆøÌåÒ»Ñù£¬ÀíÏëҺ̬»ìºÏÎïÖзÖ×Ó¼äûÓÐÏ໥×÷ÓÃÁ¦¡££¨ £©¡£ 12.Ò»¶¨Î¶ÈÏ£¬Î¢ÈÜÆøÌåÔÚË®ÖеÄÈܽâ¶ÈÓëÆäƽºâÆøÏà·Öѹ³ÉÕý±È¡££¨ £© 13.???H?ÊÇÆ«Ä¦¶ûìÊ,²»ÊÇ»¯Ñ§ÊÆ.( ) ???nB?S,p,nC14.Ï¡ÈÜÒºµÄ·Ðµã×ÜÊǸßÓÚ´¿ÈܼÁµÄ·Ðµã.( ) 15.ÈκÎÒ»¸öƫĦ¶ûÁ¿¾ùÊÇζȡ¢Ñ¹Á¦ºÍ×é³ÉµÄº¯Êý¡££¨ £© 16.º¬²»»Ó·¢ÐÔÈÜÖʵÄÀíÏëÏ¡ÈÜÒºµÄ·Ðµã×ÜÊǸßÓÚ´¿ÈܼÁµÄ·Ðµã¡££¨ £© ***17.ÔÚÒ»¶¨Îȶ¨ÏÂ,´¿A(l)ºÍB(l)µÄ±¥ºÍÕôÆøÑ¹·Ö±ðΪp*AºÍpB,ÈôpA ºÍB(l)ÐγÉÀíÏëҺ̬»ìºÏÎïµÄÆøÏà×é³ÉyB´óÓÚÒºÏà×é³ÉxB.£¨ £©¡£ Ñ¡ÔñÌâ´ð°¸: 1.A;2.B;3.A;4.A;5.B;6.C;7.B;8.D;9.B,10.A;11.C;12.A;13.B;14.A;15.C;16.C;17.C;18.C;19.D,20.B Ìî¿ÕÌâ´ð°¸: 1.²»»Ó·¢,Ï¡;2.<;3.ÕôÆøÑ¹Ï½µ,Äý¹Ìµã½µµÍ,·ÐµãÉý¸ß,ÉøÍ¸Ñ¹4. 0.454, 0.568;4. ?108;8.ÏàµÈ,¼õС,¼õСµÄ?A???A?RTlnxA;5.0.25;6.?B??B?RTlnxB;7.5.90¡Á Âý;9.nAdVA+ nBdVB =0»òxAdVA+ xAdVB=0;10.0;11.SB????S?;12.Õý¼ºÍé-??n?B?T,p,nCÕýÐÁÍé;13. ??B??B?ÈÜÖÊ??RTln??bB??b?*2 ?;14. 0.6, 0.83;15. MA, (Tf) , ?fusHm,A, ?bB;16.СÓÚ;17. ???V?;18.775kPa;19.Ͻµ,Éý¸ß,½µµÍ ??n?B?T,p,nCÅжÏÌâ´ð°¸: 1.¡Ì;2.§·; 3.§·; 4.¡Ì; 5. §·;6.¡Á;7. ¡Á;8.¡Ì;9.§·;10.§·;11.§·;12.¡Ì;13.§·;14.§·; 15.¡Ì;16.¡Ì; 17.¡Ì ËÄ¡¢¼ÆËãÌâ 1.At 18¡æ,101.325kPa,O20.045g and N2 0.02g can be solved in 1dm3 water. Now heat 1dm3 of the solution saturated by air of 202.65kPa to boil, driving out O2 and N2 and dry them. Please find the volume and composition of the dried gas at 18¡æ,101.325kPa. Assumed that the air is ideal gas mixture and the composition of volume are:?(O2)=21%; ?(N2)=79% ´ð°¸:V=4.121¡Á10-5m3; y(O2)=0.344; y(N2)=0.656 2. 80¡æÊ±´¿±½µÄ±¥ºÍÕôÆøÑ¹ÊÇ100kPa,´¿¼×±½µÄÕôÆøÑ¹Îª38.7kPa,Á½ÒºÌå¿ÉÐγÉÀíÏëҺ̬»ìºÏÎï.ÈôÓб½-¼×±½µÄÆø-Һƽºâ»ìºÏÎï,80¡æÆøÏàÖб½µÄĦ¶û·ÖÊýΪ0.300,ÇóÒºÏàµÄ×é³ÉºÍÆøÏà×Üѹ. At 80¡æ,the saturated vapor pressure of C6H6 and C7H8 is 100kPa and 38.7kPa respectively. C6H6 and C7H8 can form mixture of ideal liquid, If vapor composition is y(C6H6)=0.300 when the system reached in gas-liquid equilibrium. Calculate the liquid composition and the total pressure. ´ð°¸:x(±½)=0.142;p=47.40kPa 3.At 100¡æ,the vapor pressure of CCl4 and SnCl4 is respectively 1.933¡Á105Pa and 0.666¡Á105Pa. CCl4 and SnCl4 can form mixture of ideal liquid, when external pressure p=1.013¡Á105Pa,this mixture of ideal liquid is heated to boiling, please calculate: (1) Composition of this mixture of ideal liquid; (2) Composition of the first air bubble while the mixture of ideal liquid is boiling. ´ð°¸:xA=0.274, yA=0.523 4.At 20¡æ, solve HCl into C6H6 reached in equilibrium. When the partial pressure of HCl was 101.325kPa, the mole fraction of HCl in the solution was 0.0425. It is known that saturated vapor pressure of C6H6 is 10.0kPa. If the total vapor pressure of HCl and C6H6 is 101.325kPa at 20¡æ, please calculate how much HCl can be soluted in 100g C6H6. ´ð°¸:mHCl=1.87g 5.10g C6H12O6 can be solved in 400g alcohol, the boiling point elevation of the solution is 0.1428¡æ. while there is 2g organic matter solved in 100g alcohol which the boiling point elevation of the solution is 0.1250¡æ. Please calculate the relative molecular mass of the organic matter. ´ð°¸:165 6. Blood can be regarded as aqueous solution, solidified at -0.56¡æ and 101.325kPa. It is known that the freezing point lowering coefficients of water Kf=1.86K?mol-1?kg. Please find (1) the osmotic pressure of blood at 37¡æ; (2) at the same temperature, how much C12H22O11 is needed to put into 1dm3 aqueous solution then the osmotic presure be the same as blood. ´ð°¸: 776kPa,103g 7. 0.5455g some solute was solved into 25g CCl4. The equilibrium vapor partial pressure of CCl4 was 11.19kPa. While at the same temperature, the saturated vapor pressure of pure CCl4 is 11.4kPa. Please find: (1) the relative molecular mass of the solute; (2) according to the result of element analysis, the solute is composed of C 94.34% and H 5.66%, determine the molecular formula of the solute. ´ð°¸:MB=177,C14H10 8.By putting 13.7g C6H5C6H5 into C6H6, the boiling point of the solution was 82.4¡æ.Given that the boiling point of pure C6H6 is 80.1¡æ. Please calculate: (1)The boiling point elevation coefficients of C6H6. (2) Molar vaporation enthalpy of C6H6. ´ð°¸:Kb?2.58K?mol?1?kg,?vapHm?31.4kJ?mol?1 9.ÔÚijһζÈÏÂ,½«µâÈܽâÓÚCCl4ÖÐ.µ±µâµÄĦ¶û·ÖÊýx(I2)ÔÚ0.01~0.04·¶Î§ÄÚʱ,´ËÈÜÒº·ûºÏÏ¡ÈÜÒº¹æÂÉ.½ñ²âµÃƽºâÊ±ÆøÏàÖеâµÄÕôÆøÑ¹ÓëÒºÏàÖеâµÄĦ¶û·ÖÊýÖ®¼äµÄÁ½×éÊý¾ÝÈçÏÂ: P(I2,g)/kPa x(I2) 1.638 0.03 16.72 0.5 Çóx(I2)=0.5ʱÈÜÒºÖеâµÄ»î¶È¼°»î¶ÈϵÊý. At certain temperature , iodine was solved in CCl4. When the mole fraction of iodine x(I2) was between 0.01~0.04, the solution obeys dilute solution regular. Now in equilibrium, two groups of data have been tested as below: P(I2,g)/kPa x(I2) 1.638 0.03 16.72 0.5 Please calculate the activity and activity factor of iodine when x(I2)=0.5. ´ð°¸: a(I2)=0.306, ¦Ã(I2)=0.612 µÚÎåÕ »¯Ñ§Æ½ºâ Ò»¡¢Ñ¡ÔñÌâ 1. PCl5µÄ·Ö½â·´Ó¦PCl5(g) == PCl3(g) + Cl2(g) ÔÚ473 K´ïµ½Æ½ºâʱPCl5(g) ÓÐ48.5%·Ö½â£¬ÔÚ573 K ´ïµ½Æ½ºâʱ£¬ÓÐ97 %·Ö½â£¬Ôò´Ë·´Ó¦ÊÇ£¨ £© £¨A£©ÎüÈÈ·´Ó¦£»(B£©·ÅÈÈ·´Ó¦£»£¨C£©·´Ó¦µÄ±ê׼Ħ¶ûìʱäΪÁãµÄ·´Ó¦£»£¨D£©ÔÚÕâÁ½¸öζÈϱê׼ƽºâ³£ÊýÏàµÈµÄ·´Ó¦¡£ 2.ÉèÓÐÀíÏëÆøÌå·´Ó¦A(g)+B(g)==C(g)£¬ÔÚζÈT£¬Ìå»ýVµÄÈÝÆ÷ÖУ¬Èý¸ö×é·ÖµÄ·Öѹ·Ö±ðΪpA¡¢pB¡¢pCʱ´ïµ½Æ½ºâ£¬Èç¹ûÔÚT¡¢Vºã¶¨Ê±£¬×¢ÈëÎïÖʵÄÁ¿ÎªnDµÄ¶èÐÔ×é·Ö£¬Ôòƽºâ½«£¨ £©¡£ (A)ÏòÓÒÒÆ¶¯ (B)Ïò×óÒÆ¶¯ ( C )²»Òƶ¯ (D)²»ÄÜÈ·¶¨ 3. Éè·´Ó¦ aA(g ) == yY(g) + zZ(g), ÔÚ101.325 kPa¡¢300 KÏ£¬AµÄת»¯ÂÊÊÇ600 KµÄ2±¶£¬¶øÇÒÔÚ300 KÏÂϵͳѹÁ¦Îª101 325 PaµÄת»¯ÂÊÊÇ2¡Á101 325 PaµÄ2 ±¶£¬¹Ê¿ÉÍÆ¶Ï¸Ã·´Ó¦ ( ) £¨A£©±ê׼ƽºâ³£ÊýÓëζȣ¬Ñ¹Á¦³É·´±È£» £¨B£©ÊÇÒ»¸öÌå»ýÔö¼ÓµÄÎüÈÈ·´Ó¦ £¨C£©ÊÇÒ»¸öÌå»ýÔö¼ÓµÄ·ÅÈÈ·´Ó¦£» (D)±ê׼ƽºâ³£ÊýÓëζȳÉÕý±È£¬ÓëѹÁ¦³É·´±È¡£ 4.½«20¿ËCaCO3£¨s£©ºÍ60¿ËµÄCaCO3£¨s£©·Ö±ð·ÅÈë³éÕæ¿Õ¡¢Í¬ÈÝ»ýµÄAÈÝÆ÷ºÍBÈÝÆ÷ÖУ¬ÇÒÓëͬһ¶¨ÎÂÈÈÔ´Ïà½Ó´¥£¬´ïµ½»¯Ñ§Æ½ºâʱCaCO3£¨s£©²¿·Ö·Ö½âΪCaO(s)ºÍCO2 (g),ÈôºöÂÔ¹ÌÌåÌå»ý,ÔòÁ½ÈÝÆ÷ÖÐCaCO3£¨s£©µÄ·Ö½âÁ¿Îª( ) £¨A£©AÈÝÆ÷ÖÐµÄ¶à £¨B£©BÈÝÆ÷ÖÐµÄ¶à £¨C£©Ò»Ñù¶à £¨D£©²»È·¶¨5. ?ÀíÏëÆøÌå·´Ó¦N2O5£¨g£©== N2O4£¨g£©+1/2O2£¨g£©µÄ?rHmΪ41.84kJ¡Ámol-1¡£ÒªÔö¼Ó N2O4£¨g£©µÄ²úÂÊ¿ÉÒÔ£¨ £© £¨A£©½µµÍÎÂ¶È £¨B£©Ìá¸ßÎÂ¶È £¨C£©Ìá¸ßѹÁ¦ £¨D£©¶¨Î¶¨ÈݼÓÈë¶èÐÔÆøÌå 6.Ó°ÏìÈÎÒâÒ»¸ö»¯Ñ§·´Ó¦µÄ±ê׼ƽºâ³£ÊýÖµµÄÒòËØÎª£º£¨ £© (A) ´ß»¯¼Á (B) ÎÂ¶È (C) ѹÁ¦ (D) ¶èÐÔ×é·Ö ?7.Óжþ¸ö·´Ó¦£º SO2(g)+(1/2)O2(g)===SO3(g) , K1 ??? 2SO2(g)+O2(g)===2SO3(g) , K2 ,ÔòK1ÓëK2µÄ¹ØÏµÊÇ£º £¨ £© ??(A) K1?K2 (B) K1???2??????K2 (C) ?K2??K1 (D) 2K2?K1 28.ÒÑÖª·´Ó¦2NH3===N2+3H2µÄ±ê׼ƽºâ³£ÊýΪ0.25¡£ ͬһÌõ¼þÏ·´Ó¦(1/2)N2+(3/2)H2 ====NH3µÄ±ê׼ƽºâ³£ÊýΪ£¨ £©¡£ (A) 4 (B)0.5 ( C)2 (D) 1 9.¶ÔÓÚ»¯Ñ§·´Ó¦K?ÓëTµÄ¹ØÏµÖУ¬ÕýÈ·µÄÊÇ£¨ ) ??(A) Èô?rHm>0£¬TÔö¼Ó£¬ K?Ôö¼Ó; (B) Èô?rHm<0£¬TÔö¼Ó£¬ K?Ôö¼Ó ??(C) ?rHm<0»ò?rHm>0 £¬T±ä¶øK²»±ä ; (D) ÒÔÉϴ𰸾ù²»ÕýÈ· ?10.ζÈÉý¸ßʱ£¬¹ÌÌåÑõ»¯ÎïµÄ·Ö½âѹÁ¦£¨·Ö½â·´Ó¦ÊÇÎüÈÈ·´Ó¦£©£º£¨ £©£¨A£©½µµÍ£»£¨B£©Ôö´ó£»£¨C£©ºã¶¨£»£¨D£©ÎÞ·¨È·¶¨¡£11.·´Ó¦ 2NO(g) + O2(g) == 2NO2(g) ÊÇ·ÅÈȵÄ, µ±·´Ó¦ÔÚijζȡ¢Ñ¹Á¦ÏÂ´ïÆ½ºâʱ£¬ÈôʹƽºâÏòÓÒÒÆ¶¯¡£ÔòÓ¦²ÉÈ¡µÄ´ëÊ©ÊÇ£º£¨ £©£¨A£©½µµÍζȺͼõСѹÁ¦£»£¨B£©½µµÍζȺÍÔö´óѹÁ¦£»£¨C£©Éý¸ßζȺͼõСѹÁ¦£»£¨D£©Éý¸ßζȺÍÔö´óѹÁ¦¡£ 12.ÒÑÖª´¿ÀíÏëÆøÌå·´Ó¦£º aA + bB == yY + zZ ÒÑÖª ??BB£¨ £©¡£ ?0,£¬Ôò¶ÔÓڸ÷´Ó¦£¬µÈεÈѹÏÂÌí¼Ó¶èÐÔ×é·Ö£¬Æ½ºâ½«£º £¨A£©Ïò×óÒÆ¶¯£»£¨B£©²»Òƶ¯£»£¨C£©ÏòÓÒÒÆ¶¯; (D) ÒÔÉϴ𰸾ù²»ÕýÈ· 13.ÏÂÁдëÊ©Öп϶¨Ê¹ÀíÏëÆøÌå·´Ó¦µÄ±ê׼ƽºâ³£Êý¸Ä±äµÄÊÇ£¨ £© (A)Ôö¼ÓijÖÖ²úÎïµÄŨ¶È (B)¼ÓÈë¶èÐÔÆøÌå (C)¸Ä±ä·´Ó¦ÎÂ¶È (D)Ôö¼ÓϵͳµÄѹÁ¦ 14.ÔÚ¸ÕÐÔÃܱÕÈÝÆ÷ÖУ¬ÀíÏëÆøÌå·´Ó¦A(g)+B(g)===Y(g)´ïƽºâ£¬ÈôÔÚ¶¨ÎÂϼÓÈëÒ»¶¨Á¿µÄ¶èÐÔÆøÌ壬ƽºâ£¨ £© (A)ÏòÓÒÒÆ¶¯ (B)Ïò×óÒÆ¶¯ ( C)²»Òƶ¯ (D)²»ÄÜÈ·¶¨ 15.ÔÚT=600KµÄζÈÏ£¬ÀíÏëÆøÌå·´Ó¦£º ?(1) A(g) + B(g) = D(g), K1?0.25; ?(2) D(g) = A(g) + B(g), K2?( ) (A)0.25 (B)0.0625 ( C)4.0 (D)0.50 16. ÔÚT=380K,×Üѹp=2.00kPaÏ£¬·´Ó¦ C6H5C2H5(g) = C6H5C2H3(g) + H2(g) µÄƽºâϵͳÖУ¬¼ÓÈëÒ»¶¨Á¿µÄ¶èÐÔ×é·ÖH2O(g)£¬Ôò·´Ó¦µÄ±ê׼ƽºâ³£ÊýK?£¨ £©£¬C6H5C2H5(g)µÄƽºâת»¯ÂʦÁ£¨ £©¡£ (A)±ä´ó (B)±äС ( C)²»±ä (D)Ìõ¼þ²»È«ÎÞ·¨È·¶¨ 17.ÔÚT=300K,·´Ó¦£ºA(g) + 2B(g) = D(g)µÄK??1¡£ÔÚÒ»³é³ÉÕæ¿ÕµÄÈÝÆ÷ÖУ¬Í¨ÈëA,B¼°DÈýÖÖÀíÏëÆøÌ壬ÔÚ300KʱpA?pB?pD?100kPa,ÔÚ´ËÌõ¼þÏ£¬·´Ó¦£¨ £©¡£(A)Ïò×óÒÆ¶¯ (B)ÏòÓÒÒÆ¶¯ ( C)·´Ó¦´¦ÓÚÆ½ºâ״̬ (D)ÎÞ·¨È·¶¨ 18.ÒÑÖª·´Ó¦ 2A(g) + D(g) = C(g)µÄ±ê׼ƽºâ³£ÊýÓëζȵĹØÏµÎª: lgK?149?6T/?K?/?11.45, p??100kPaÏ嵀 ?rH????m??k?1,?J???m?r?11(A)-12.45, -95.20?o?lS (B)1.50, JmK-11.45 ( C)-28.64, -219.2 (D)28.64, 219.2 ÒÑÖª·´Ó¦ 2A(g) + D(g) = B(g)µÄ±ê׼ƽºâ³£ÊýÓëζȵĹØÏµÎª: lnK?3444.T/K/?7???£¬D(g)µÄƽºâת»¯ÂÊ??26.6£¨5 £©K?3?? (A) ±ä´ó (B)±äС ( C)²»±ä (D)Ìõ¼þ²»È«ÎÞ·¨È·¶¨ 20. ÔÚT,p¼°×é³Éºã¶¨£¬ÇÒ²»×÷·ÇÌå»ý¹¦µÄÈÎÒ»»¯Ñ§·´Ó¦¡£ (1)µ±·´Ó¦ÄÜ×Ô¶¯½øÐÐʱ£¬´Ë·´Ó¦µÄ»¯Ñ§Ç׺ÍÊÆA??;?rGm??;Jp/K???; (2)µ±·´Ó¦²»ÄÜ×Ô¶¯½øÐÐʱ£¬´Ë·´Ó¦µÄ»¯Ñ§Ç׺ÍÊÆA?(3)µ±·´Ó¦´¦ÓÚÆ½ºâ״̬ʱ£¬´Ë·´Ó¦µÄ»¯Ñ§Ç׺ÍÊÆA??;?rGm??;Jp/K???; ?;?rGm??;Jp/K???¡£ (A) >0 (B) >1 ( C) =0 (D) =1 (E) <0 (F) <1 ¶þ¡¢Ìî¿ÕÌâ 1.723¡æÊ±·´Ó¦Fe(s)+CO2 (g)===FeO(s)+CO(g)µÄ±ê׼ƽºâ³£ÊýΪ1.82£¬ÈôÆøÏày(CO2)=0.65£¬y(CO)=0.35£¬Ôò·´Ó¦½«( )¡££¨Ñ¡Ìî¨DÏòÓÒ½øÐС¬ ¨DÏò×ó½øÐС¬ ¨D´ïµ½Æ½ºâ¡¬£© 2.д³ö±ê׼ƽºâ³£ÊýµÄ¶¨Òåʽ£º( )£¬Ð´³ö±ê׼ƽºâ³£ÊýÓëζȵĹØÏµÊ½£¨·¶Ìغɷò·½³Ìʽ£©( )¡£ 3.ÔÚζÈTʱ½«NH4HS(s)ÖÃÓÚ³é¿ÕµÄÈÝÆ÷ÖУ¬µ±·´Ó¦NH4HS(s)===NH3 (g)+H2S(g)´ïµ½Æ½ºâʱ£¬²âµÃ×ÜѹÁ¦Îªp£¬Ôò·´Ó¦µÄ±ê׼ƽºâ³£ÊýΪ ( )¡£4. Ä³ÆøÏà·´Ó¦A ==Y+ ZÊÇÎüÈÈ·´Ó¦, ÔÚ 25 ¡æÊ±Æä±ê׼ƽºâ³£ÊýK¦È=1 , Ôò25 ¡æÊ±·´Ó¦µÄ?rSm¦È( )0£¬´Ë·´Ó¦ÔÚ40 ¡æÊ±µÄK¦È( )25¡æÊ±µÄK¦È¡£ (Ñ¡Ìî > £¬=£¬<) 5£®»¯Ñ§·´Ó¦µÈη½³Ì£º?rGm??rGm?RTlnJpÖУ¬±íʾϵͳ±ê׼״̬ÏÂÐÔÖʵÄÊÇ( ) £¬ÓÃÀ´ÅжϷ´Ó¦½øÐз½ÏòµÄÊÇ( )£¬ÓÃÀ´ÅжϷ´Ó¦½øÐÐÏ޶ȵÄÊÇ ( )¡£ 6£®ÔÚÒ»¶¨T¡¢PÏ£¬·´Ó¦A(g)=Y(g)+Z(g)´ïƽºâʱAµÄƽºâת»¯ÂÊΪXA,1eq,µ±¼ÓÈë¶èÐÔÆøÌå¶øT¡¢P±£³Ö²»±äʱ£¬AµÄƽºâת»¯ÂÊΪXA,2eq£¬ÔòXA,2eq ( ) XA,1eq£¨ Ìî < £¬= £¬> ºÅ £©¡£ 7£®ºãÎÂʱÔÚA-B˫ҺϵÖУ¬ÈôÔö¼ÓA×é·Ö£¬Ê¹Æä·ÖѹpAÉÏÉý£¬ÔòB×é·ÖÔÚÆøÏàÖеķÖѹpB½«( )¡££¨ÌîÉÏÉý¡¢Ï½µ»ò²»±ä£© 8£®ÒÑÖª·´Ó¦2NO(g)+O2(g)= 2NO2(g)µÄ¦¤rHm¦È(T)<0£¬µ±ÉÏÊö·´Ó¦´ïµ½Æ½ºâºó£¬ÈôҪƽºâÏò²úÎï·½ÏòÒÆ¶¯£¬¿ÉÒÔ²ÉÈ¡( )£¨Éý¸ß»ò½µµÍ£©Î¶Ȼò( )£¨Ôö´ó»ò¼õÉÙ£©Ñ¹Á¦µÄ´ëÊ©¡£ 9£®·´Ó¦C(s)+H2O=CO(g)+H2(g)ÔÚ400¡æÊ±´ïµ½Æ½ºâ£¬¦¤rHm¦È=133.5kJ/mol£¬ÎªÊ¹Æ½ºâÏòÓÒÒÆ¶¯£¬¿É²ÉÈ¡µÄ´ëÊ©ÓÐ( ) ( ) ( ) ( ) ( ) ¡£ 10£®·´Ó¦£¨¢¡£©SO2+0.5O2= SO3 K¢¡¦È(T)(¢¢) 2SO2+O2= 2SO3 K2¦È(T),ÔòK¢¡¦È(T)ÓëK2¦È(T)µÄ¹ØÏµÊÇ( )¡£ 11.ÔÚT¡¢P¼°×é³ÉÒ»¶¨µÄÌõ¼þÏ·´Ó¦0=¡Æ¦ÍB BµÄ?rGmÓë´Ë·´Ó¦µÄ·´Ó¦½ø¶È¦Î£¬K?£¬JP,?rH m,?rSm¼°»¯Ñ§ÊƦÌBÖ®¼äµÄ¶¨Á¿¹ØÏµÊ½Îª?rGm= ( ) =( ) =( )= ( )¡£ ?12£®ÔÚijһζÈTµÄ³é¿ÕÈÝÆ÷£®·´Ó¦B3(s) ===3B(g)´ïƽºâʱ×ÜѹÁ¦Îª60 kPa,Ôò´Ë·´Ó¦µÄ±ê׼ƽºâ³£ÊýK¦È= ( )¡£ 13£®Ä³·´Ó¦µÄ?r H¦ÈmÓëTµÄ¹ØÏµÎª?rH¦Èm(J¡¤mol-1)=83.145T/K £0.83145, Ôò´Ë·´Ó¦µÄ dlnK?/dT?( )¡£ Èý¡¢ÅжÏÌâ 1.¶ÔÓÚÒ»¸ö»¯Ñ§¼ÆÁ¿ÏµÊýÖ®ºÍΪÁãµÄ·ÅÈÈ·´Ó¦£¬Î¶ÈÉý¸ßʱ£¬·´Ó¦ÎïµÄƽºâת»¯ÂÊÒ² Éý¸ß¡£( ) 2.ijһ·´Ó¦ÔÚ¶¨Î¡¢¶¨Ñ¹ÇÒÎÞ·ÇÌå»ý¹¦µÄÌõ¼þÏ£¬µ±¸Ã·´Ó¦µÄ±ê׼ƽºâ³£ÊýK´óÓÚ·ÖѹÉÌJʱ£¬Ôò¸Ã·´Ó¦ÄÜÕýÏò½øÐС£( ) 3.¶ÔÓÚÕæÊµÆøÌå»ìºÏÎïµÄ·´Ó¦£¬¸Ã·´Ó¦µÄ±ê׼ƽºâ³£ÊýK?½ö½öÊÇζȵĺ¯Êý¡£( ) 4.¶ÔÓÚ·´Ó¦:N2(g) +3H2(g) = 2NH3(g),ÔÚÒ»¶¨Î¶ÈÏÂÔö¼ÓϵͳµÄѹÁ¦Æ½ºâÏòÓÒÒÆ¶¯( )¡£ 5£®¶ÔÓÚ·´Ó¦ CH4(g) + 2O2(g) = CO2(g) + 2H2O(g)£¬ºãѹÏÂÉý¸ß·´Ó¦ÏµÍ³µÄζȣ¬´Ë·´Ó¦µÄ±ê׼ƽºâ³£ÊýKÔö´ó¡££¨ £© 6£®¶ÔÓÚÀíÏëÆøÌå·´Ó¦£¬¶¨Î¶¨ÈÝÏÂÌí¼Ó¶èÐÔ×é·Öʱ£¬Æ½ºâ²»Òƶ¯¡££¨ £© 7.ÈκÎÒ»¸ö»¯Ñ§·´Ó¦¶¼¿ÉÒÔÓæ¤r G m?À´ÅжϷ´Ó¦µÄ·½Ïò¡££¨ £© 8.ÒòΪ¦¤r G m?==£RTlnK?£¬ËùÒÔ¦¤r G m?ÊÇÔÚζÈTʱ£¬»¯Ñ§·´Ó¦´ïµ½Æ½ºâ״̬ʱµÄ¼ª²¼Ë¹º¯Êý±ä¡££¨ £© 9£®±ê׼ƽºâ³£Êý¸Ä±äƽºâÒ»¶¨»áÒÆ¶¯£¬·´Ö®£¬Æ½ºâÒÆ¶¯Á˱ê׼ƽºâ³£ÊýÒ²Ò»¶¨»á¸Ä±ä¡££¨ £© ??10£®Èç¹ûijһ»¯Ñ§·´Ó¦µÄ?rHm²»ËæÎ¶ȱ仯£¬ÄÇôÆä?rSmÒ²²»ËæÎ¶ȱ仯£¬µ«ÊÇ ???Æä?rGmÈ´ÓëζÈÓйء££¨ £© 11.ÒÑÖª·´Ó¦CuO(s)=Cu(s)+0.5O2(g)µÄ¦¤rSm¦È£¨T£©>0£¬Ôò¸Ã·´Ó¦µÄ¦¤rGm¦È£¨T£©½«ËæÎ¶ȵÄÉý¸ß¶ø¼õС¡££¨ £© 12.ÒÑÖª·´Ó¦B3(s) = 3B(g) ´ïµ½Æ½ºâʱ×ÜѹÁ¦Îª60kPa,Ôò´Ë·´Ó¦µÄ±ê׼ƽºâ³£Êý ?K??0.216( ). 13.¶ÔÓÚÒÒ±½ÍÑÇâÖÆ±½ÒÒÏ©µÄ·´Ó¦£ºC6H5C2H5(g) = C6H5C2H3(g) £« H2(g),ÔÚζȺÍ×Üѹ²»±äʱ£¬Ôö¼Ó¶èÐÔ×é·ÖƽºâÏòÉú³É²úÎï·½ÏòÒÆ¶¯£¨ £©¡£ ?14. ·´Ó¦N2(g) +3H2(g) = 2NH3(g)µÄ±ê׼ƽºâ³£ÊýΪK1Ôò·´Ó¦1/2N2(g) +3/2H2(g) ?4£¬?= NH3(g)µÄ±ê׼ƽºâ³£ÊýΪK2¡£ ?2£¨ £© ?15. ·´Ó¦N2(g) +3H2(g) = 2NH3(g)µÄ±ê׼ƽºâ³£ÊýΪK1Ôò·´Ó¦NH3(g) =1/2N2(g) ?4£¬ ?+3/2H2(g)µÄ±ê׼ƽºâ³£ÊýΪK2¡£ ?0.5£¨ £© 16.Èç¹ûijһ»¯Ñ§·´Ó¦µÄ¦¤rHm¦È£¨T£©<0,¸Ã·´Ó¦µÄK?Ëæ×ÅζÈÉý¸ß¶ø¼õС¡££¨ £© 17.ºãκãѹÇÒ²»Éæ¼°·ÇÌå»ý¹¦Ìõ¼þÏ£¬Ò»ÇÐÎüÈÈÇÒìØ¼õСµÄ·´Ó¦£¬¾ù²»ÄÜ×Ô¶¯·¢Éú( )¡£ 18.¶ÔÓÚÀíÏëÆøÌå·´Ó¦£º0???B?g?£¬ÔÚºãκãѹÏÂ??BBBB?0ʱ£¬Ëæ×ŶèÐÔÆøÌå µÄ¼ÓÈë¶øÆ½ºâÏòÓÒÒÆ¶¯£¨ £©¡£ 19. ¶ÔÓÚÀíÏëÆøÌå·´Ó¦£¬µÈεÈÈÝÌõ¼þÏÂÌí¼Ó¶èÐÔ×é·Öʱ£¬Æ½ºâ½«ÏòÌå»ý¼õСµÄ·½ÏòÒÆ¶¯£¨ £©¡£ 20. ijһ·´Ó¦ÔÚºãΡ¢ºãѹÇÒÎÞ·ÇÌå»ý¹¦µÄÌõ¼þÏ£¬µ±¸Ã·´Ó¦µÄ¦¤rGm(T)<0ʱ£¬¸Ã·´Ó¦ÄÜÕýÏò½øÐУ¨ £©¡£ Ñ¡ÔñÌâ´ð°¸: 1.A;2 C.£³C;£´C;£µB;£¶B;7 B;8 C;£¹A;10.B;11.B;12 C;13;D;14.C;15.C;16.C,A;17.C; 18.C;19.B,B;20.(1)A,E,B,(2)E,A,F,(3)C,C,D Ìî¿ÕÌâ´ð°¸: 1£®ÏòÓÒ½øÐÐ;2£®K??def???T?/RT? ; dlnK?/dT??rHm?exp?- ?rGm/RT2? ?3.0.25¡Á£¨p/p?£©2;4£®>£»>;5.¦¤r G m¦È (T)£»¦¤r G m (T)£»¦¤r G m¦È (T);6£®>;7.Ͻµ 8.½µµÍ£»Ôö´ó;9£®ÉýΣ»¼õС×Üѹ£»Ìá¸ßË®ÕôÆø·Öѹ£»¼ÓÈë¶èÐÔÆøÌ壻¼°Ê±½«COºÍ ??H2ÒÆ×ß;10£®K¦È12= K¦È2;11.?rGm=??G?= ??????T,P??BB£¨JP/ K?£© ?B=?rHm £T?rSm =RTln ?12£®K¦È=£¨P/ P?£©3=(60/100)3=0.216;13£®dlnK?/dT??rHm/RT2= (83.145T/K £ mol-1/RT2=10/ T£0.1 K/ T2 0.83145) J¡¤ÅжÏÌâ´ð°¸: 1.£¨¡Á£©2.£¨¡Ì£©3.£¨¡Ì£©4.£¨¡Ì£©5£®£¨¡Á£©6£®£¨¡Ì£©7.£¨¡Á£©8. £¨¡Á£©9£®£¨¡Á£©10£®£¨¡Ì£©11. £¨¡Ì£© 12.£¨¡Ì£©13. £¨¡Ì£©14. £¨¡Ì£©15. £¨¡Ì£©16. £¨¡Ì£©17. £¨¡Ì£©18. £¨¡Á£©19. £¨¡Á£©20. £¨¡Ì£© ËÄ¡¢¼ÆËãÌâ ?1£®T=1000Kʱ£¬·´Ó¦C(s)+2H2(g)==CH4(g) µÄ?rGm=17.397KJ.mol-1¡£ÏÖÓÐÓë̼·´Ó¦ µÄÆøÌå»ìºÏÎÆä×é³ÉΪÌå»ý·ÖÊý£ù(CH4)=0.1, £ù(H2)=0.8, £ù(N2)=0.10£¬ÊÔÎÊ£º £¨1£©T=1000K£¬p=100kPaʱ£¬?rGmµÈÓÚ¶àÉÙ? ¼×ÍéÄÜ·ñÉú³É? £¨2£©ÔÚT=1000KÏ£¬Ñ¹Á¦ÐëÔö¼Óµ½Èô¸É,ÉÏÊöºÏ³É¼×ÍéµÄ·´Ó¦²ÅÄܽøÐÐ? ?At T=1 000K£¬C(s)+2H2(g)==CH4(g), ?rGm=17.397KJ.mol-1¡£The gas mixture reacts with carbon is £ù(CH4)=0.1, £ù(H2)=0.8, £ù(N2)=0.10£¬try to answer£º (1)if T=1000K£¬p=100kPa£¬?rGm=? Can CH4 be produced? (2)if T=1000KÏ£¬how much pressure does it increase to make above reaction toward right? ´ð°¸£º(1) ?rGm?3.963kJ?mol?1£¬²»ÄÜÉú³É¼×Í飻(2)p>161.06ka²Å¿ÉÄÜÉú³É¼×Íé 2£®¼×Íéת»¯·´Ó¦: CH4 (g)+H2O(g)=CO(g)+3H2 (g) ÔÚ900Kϵıê׼ƽºâ³£ÊýΪ1.280¡£ÈôÈ¡µÈÎïÖʵÄÁ¿µÄCH4 (g)ºÍH2O(g)·´Ó¦£¬ÇóÔÚ¸Ãζȼ°101.325 kPaѹÁ¦Ï´ﵽƽºâʱϵͳµÄ×é³É¡£ CH4 conversion reaction: CH4 (g)+H2O(g)=CO(g)+3H2 (g) At 900K K?=1.280. if the amount of CH4 (g) and H2O(g) is 1:1£¬Calculate the component of the system when it reaches equilibrium at 101.325 kPa. ´ð°¸£ºy?CH4??y?H2O??0.146;y?CO??0.177;y?H2??0.531 3£®ÒÑ֪ͬһζȣ¬Á½·´Ó¦·½³Ì¼°Æä±ê׼ƽºâ³£ÊýÈçÏ£º C(ʯī)+H20(g)====C0(g)+H2(g) K1?T? ? C(ʯī)+2H20(g)====C02 (g)+2H2(g) K2?T? ?ÇóÏÂÁз´Ó¦µÄK??T?¡£ C0(g)+H20(g)====C02(g)+H2(g) Given that at the same temperature, two reaction equations and their standard equilibrium constant are as below: ?C(graphite)+H20(g) ====C0(g)+H2(g) K1?T? ? C(graphite)+2H20(g)====C02 (g)+2H2(g) K2?T? Calculate K??T? of the following reaction: C0(g)+H20(g)====C02(g)+H2(g) ??´ð°¸£ºK??K2 /K14£®Ä³ÀíÏëÆøÌå·´Ó¦ÈçÏ£º A(g) + 2B(g) = Y(g) + 4Z(g) ÒÑÖªÓйØÊý¾ÝÈçϱí: ÎïÖÊ A(g) B(g) Y(g) Z(g) ??B,298K??fHmkJ?mol?1 ??B,298K?Sm ?1?1kJ?mol?KCp,m?B?kJ?mol?K3 14 11 5 ?1?1 -74.84 -241.84 -393.42 0 186.0 188.0 214.0 130.0 (1)¾¼ÆËã˵Ã÷£ºµ±A¡¢B¡¢YºÍZµÄĦ¶û·ÖÊý·Ö±ðΪ0.3£¬0.2£¬0.3ºÍ0.2£¬T=800K,p=0.1MPaʱ·´Ó¦½øÐеķ½Ïò£» (2)ÆäËüÌõ¼þÓë(1)Ïàͬ£¬ÈçºÎ¸Ä±äζÈʹ·´Ó¦Ïò×ÅÓë(1)µÄ·½ÏòÏà·´µÄ·½Ïò½øÐУ¿ Relative data of pg reaction A(g) + 2B(g)==Y(g) + 4Z(g) are£º substance A(g) B(g) Y(g) Z(g) ?fHm?(298.15K)/ kJ¡¤mol-1 £74.84 £241.84 £393.42 0 Sm?(298.15K)/ J¡¤K-1¡¤mol-1 186.0 188.0 214.0 130.0 Cp,m?(B) / J¡¤K-1¡¤mol-1 3 14 11 5 Please calculate and determine:(1) the direction of chemical reaction while T=810K£¬p=0.1MPa and the mole fraction of A, B,Y and Z are 0.3£¬0.2£¬0.3 and 0.2 respectively ; (2) if the condition is same as (1), how to change temperature to make the direction backward. ´ð°¸£º£¨1£©·´Ó¦Ïò·´·½Ïò½øÐУ»£¨2£©T>827K 5£®ÔÚÕæ¿ÕµÄÈÝÆ÷ÖзÅÈ˹Ì̬µÄNH4HS£¬ÓÚ25¡æÏ·ֽâΪNH3(g)ºÍH2S(g)£¬Æ½ºâʱÈÝÆ÷ÄÚµÄѹÁ¦Îª66.66kPa¡£ £¨1£© µ±·ÅÈëNH4HS (s)ʱÈÝÆ÷ÖÐÒÑÓÐ39.99 kPaµÄH2S(g)£¬ÇóÆ½ºâʱÈÝÆ÷ÖеÄѹÁ¦£» £¨2£© ÈÝÆ÷ÖÐÔÓÐ6.666kPaµÄNH3(g),ÎÊÐè¼Ó¶à´óѹÁ¦µÄH2S(g)£¬²ÅÄÜÐγÉNH4HS ¹ÌÌå? The solid NH4HS was put into vacuum container , and was decomposed to NH3(g)ºÍH2S(g) at 25¡æ, When the reaction reached in equilibrium the pressure was 66.66kPa. (1) When NH4HS (s) was put into the container, the pressure of H2S(g) was 39.99 kPa. Please calculate the pressure in container when the reaction reaches equilibrium. (2)Beginning with 6.666kPaµÄNH3(g) in the container, how much pressure of H2S(g) is needed to form solid NH4HS. ´ð°¸£º£¨1£©p=77.7kPa;(2) p£¨H2S£©>166.65 kPa²Å¿ÉÄÜÓÐNH4HS (s)Éú³É 6£®ÏÖÓÐÀíÏëÆøÌå¼ä·´Ó¦ A(g)+ B(g) ==== C(g) +D(g) ¿ªÊ¼Ê±£¬AÓëB¾ùΪlmol£¬ÔÚ25¡æÊ±·´Ó¦´ïµ½Æ½ºâ£¬´ËʱAÓëBÎïÖʵÄÁ¿¸÷Ϊ(1£¯3)mol¡£ (1) Çó´Ë·´Ó¦µÄK?£» (2) ¿ªÊ¼Ê±£¬AΪlmol£¬BΪ2mol£» (3) ¿ªÊ¼Ê±£¬AΪlmol£¬BΪlmol£¬CΪ0£®5mol£» (4) ¿ªÊ¼Ê±£¬CΪ1mol £¬DΪ2mol£»·Ö±ðÇó·´Ó¦´ïƽºâʱCµÄÎïÖʵÄÁ¿¡£ There is a reaction of perfect gas A(g)+ B(g) ==== C(g) +D(g). At the beginning, both A and B are 1mol, when the reaction reach equilibrium at 25¡æ, the substance amount of A and B are (1£¯3)mol respectively. (1) Calculate K? of reaction (2) At the beginning, A is 1mol,B is 2mol; (3) At the beginning, A is 1mol,B is 2mol,C is 0.5mol; (4) At the beginning, C is 1mol,D is 2mol; Please Calculate the substance amout of C respectively when the reaction reacheas equilibrium. ´ð°¸£º(1) K?£½4;(2) nC=0.845mol;(3) nC=1.096mol;(4) nC=0.543mol 7£®ÔÚ¸ßÎÂÏÂË®ÕôÆøÍ¨¹ýׯÈȵÄú²ã£¬°´ÏÂʽÉú³ÉË®ÃºÆø C(ʯī)+H20(g)====C0(g)+H2(g) ÈôÔÚ1000K¼°1200Kʱ£¬K?·Ö±ðΪ2.472¼°37.58£¬ÊÔ¼ÆËã´Ëζȷ¶Î§Ä򵀮½¾ùĦ¶û ? ·´Ó¦ìÊ?rHm¼°ÔÚ1100Kʱ·´Ó¦µÄ±ê׼ƽºâ³£ÊýK Under high temperature, the water vapor go through coal layer which is scorching hot , produce water gas as the reaction below: C(graphite)+H20(g)====C0(g)+H2(g) ? If K? is2.472 and 37.58 under 1000K and 1200K respectively, Calculate ?r H m and K of the reaction at 1100K. ´ð°¸£ºK?£¨1100K£©=11.0 ?8£®ÔÚ100¡æÏ£¬ÏÂÁз´Ó¦µÄK=8.1¡Á10-9£¬?rSm =125.6J¡¤mol-1¡¤K-1¡£¼ÆËã: ?COCl2 (g)====CO(g)+C12 (g) (1)100¡æÇÒ×ÜѹΪ200kPaʱCOCl2µÄ½âÀë¶È£» (2)100¡æÊ±ÉÏÊö·´Ó¦µÄ ?rHm?£» (3)×ÜѹΪ200kPa¡¢COCl2½âÀë¶ÈΪ0.1£¥Ê±µÄζÈ(Éè?Cp,m =0)¡£ ?At 100¡æ, K=8.1¡Á10-9£¬?rSm =125.6J¡¤mol-1¡¤K-1 of the following reaction. Please ?calculate: COCl2 (g)====CO(g)+C12 (g) (1) dissociated degree of COCl2 at 100¡æ and 200kPa; (2) ?r H m? of the above reaction at 100¡æ£» (3) the temperature when dissociated degree of COCl2 is 0.1£¥ and total pressure is 200kPa (?Cp,m =0)¡£ ´ð°¸£º£¨1£©??6.37?10?5£»£¨2£©¦¤rHm=105 kJ¡¤mol-1£»£¨3£©T 2=446K 9£®Ä³ÀíÏëÆøÌå·´Ó¦2A(g) =Y(g)ÓйØÊý¾ÝÈçÏ£º ÎïÖÊ ?fHm?(298.15K)/ kJ¡¤mol-1 A(g) Y(g) 35 10 Sm? (298.15K)/ J¡¤K-1¡¤mol-1 250 300 Cp,m? (B)/ J¡¤K-1¡¤mol-1 38.0 76.0 Ç󣺣¨1£©ÔÚ310K¡¢100KPaÏ£¬A¡¢Y¸÷Ϊy=0.5µÄÆøÌå»ìºÏÎï·´Ó¦ÏòÄĸö·½Ïò½øÐУ¿ £¨2£©£ºÓûʹ·´Ó¦ÏòÓëÉÏÊö£¨1£©Ïà·´µÄ·½Ïò½øÐУ¬ÔÚÆäËûÌõ¼þ²»±äʱ£º£¨a£©¸Ä±äѹÁ¦£¬PÓ¦¿ØÖÆÔÚʲô·¶Î§£¿(b)¸Ä±äζȣ¬TÓ¦¿ØÖÆÔÚʲô·¶Î§£¿(c)¸Ä±ä×é³É£¬yAÓ¦¿ØÖÆÔÚʲô·¶Î§£¿ pg reaction: 2A(g)==Y(g) substance ?fHm?(298.15K)/ Sm?(298.15K)/ Cp,m?(B) kJ¡¤mol-1 A(g) Y(g) 35 10 J¡¤K-1¡¤mol-1 250 300 / J¡¤K-1¡¤mol-1 38.0 76.0 Please calculate and determine:(1) the direction of chemical reaction while T=310K£¬p=100KPa and the mole fraction of A and Y are 0. 5 respectively ; (2) if the other conditions are not change, how to change ¢Ù pressure p ¢Ú composition yA to make the direction backward. 1p>434.8kPa; ¡ð2T<291.6K; ¡ð3yA>0.745 ´ð°¸£º(1) Ïò×ó½øÐÐ;(2)¡ð ?10£®·´Ó¦3CuCl(g) = Cu3Cl3(g) µÄ?rGmÓëζÈTµÄ¹ØÏµÈçÏ£º ??rGm/?J?mol?1???528858?52.34?T/K?lg?T/K??438.2?T/K? ??Çó£º(1) 2000Kʱ£¬´Ë·´Ó¦µÄ?rHm£» ,?rSm(2) ´Ë·´Ó¦ÔÚ2000K£¬100kPaƽºâ»ìºÏÎïÖÐCu3Cl3µÄĦ¶û·ÖÊýΪ0.5ʱϵͳµÄ×Üѹ ?The relationship between ?rGm and T of the reaction 3CuCl(g) = Cu3Cl3(g) as follows: ??rGm/?J?mol?1???528858?52.34?T/K?lg?T/K??438.2?T/K? ??Calculate :(1) ?rHmof the reaction at 2000K ; ,?rSm(2) the mole fraction of Cu3Cl3 in the equilibrium mixture at 2000K and 100kPa. ??´ð°¸£º(1)?rSm?2000K???242.6J?K?1?mol?1;?rHm?2000K???483.4kJ?mol?1 (2)p=211.2kPa µÚÁùÕ ÏàÆ½ºâ Ò»¡¢Ñ¡ÔñÌâ 1.NaHCO3(s)ÔÚÕæ¿ÕÈÝÆ÷Öв¿·Ö·Ö½âΪNa2CO3(s)¡¢H2O(g)ºÍCO2(g)´¦ÓÚÈçÏµĻ¯Ñ§Æ½ºâʱ£º NaHCO3(s) =Na2CO3(s)+H2O(g)+CO2 (g) ¸ÃϵͳµÄ¶ÀÁ¢×é·ÖÊý£¬ÏàÊý¼°×ÔÓɶȷûºÏ( ). A. 3£¬2 ; B.3£¬1 ; C. 2£¬0£» D. 2£¬1 2.½«¹ýÁ¿µÄNaHCO3 (s)·ÅÈëÒ»Õæ¿ÕÃܱÕÈÝÆ÷ÖÐ,ÔÚ50¡æÏ£¬NaHCO3(s)°´ÏÂʽ·Ö½â£º 2NaHCO3 (s) =Na2CO3 (s)+H2O(g)+CO2 (g) ¸Ãϵͳ´ïƽºâºó£¬ÔòÆä¶ÀÁ¢×é·ÖÊýC=( ), ×ÔÓɶÈÊýF=( ). A. 3£¬2 ; B.3£¬1 ; C. 2£¬0£» D. 2£¬1 3.ÔÚ2ÌâÖÐÒÑ´ïÆ½ºâµÄϵͳÖмÓÈëCO2 (g)ʱ£¬ÏµÍ³ÖØÐÂ´ïÆ½ºâºó£¬ÔòϵͳµÄ×é·ÖÊýC=( ),F=( ). A. 3£¬2 ; B.3£¬1 ; C. 2£¬0£» D. 2£¬1 4.A(l)ºÍB(l)¿ÉÐγÉÀíÏëҺ̬»ìºÏÎÈôÔÚζÈTÏ£¬´¿A(l)µÄ±¥ºÍÕôÆûѹΪp?A´óÓÚ ?´¿B(l)µÄ±¥ºÍÕôÆûѹΪpB¡£ÔòÔÚ¶þ×é·ÖµÄÕôÆøÑ¹-×é³ÉͼÉÏµÄÆø¡¢ÒºÁ½ÏàÆ½ºâÇø£¬³Ê ƽºâµÄÆø¡¢ÒºÁ½ÏàµÄ×é³ÉÓУ¨ £©¡£ A. yB>xB ; B. yB 5.ÈôA(l)ºÍB(l)¿ÉÐγÉÀíÏëҺ̬»ìºÏÎÔÚζÈTÏ£¬´¿A(l)µÄ±¥ºÍÕôÆûѹΪp?A<´¿ ?B(l)µÄ±¥ºÍÕôÆûѹΪpB¡£Ôòµ±»ìºÏÎïµÄ×é³ÉΪ0 ?¿´³öÕôÆø×ÜѹpÓëp?¡¢¡£ pABµÄÏà¶Ô´óСΪ£¨ £©??? A. P>pB ; B. P 6.ÔÚζÈTÏ£¬CaCO3 (s),CaO(s)¼°CO2 (g)µÄƽºâѹÁ¦Îªp£¬ÒÑÖªËüÃÇÖ®¼ä´æÔÚ£º CaCO3 (s) = CaO(s) + CO2 (g)·´Ó¦£¬ÈôÍù¸Ãƽºâϵͳ¼ÓÈëCO2 (g)£¬µ±ÖØÐ´ﵽƽºâʱ£¬ÏµÍ³µÄѹÁ¦£¨ £©¡£ A. ±ä´ó ; B. ±äС ; C. ²»±ä£» D. ¿ÉÄܱä´óÒ²¿ÉÄܱäС 7.ÒÑÖªCuSO4 (s)ÓëH2O(g)¿ÉÐγÉÏÂÁÐÈýÖÖ»¯ºÏÎ CuSO4 (s) + H2O(g) = CuSO4?H2O(s) CuSO4?H2O(s) + 2H20(g) = CuSO4?3H2O(s) CuSO4?3H2O(s) + 2H2O = CuSO4?5H2O(s) ÔÚ101.325kPaÏ£¬ÓëH2O(g)ƽºâ¹²´æµÄÑÎ×î¶àÓм¸ÖÖ¡£ A. 1 ; B. 2 ; C. 3£» D. 4 8.ÔÚA(µÍ·Ðµã)ÓëB(¸ß·Ðµã) Á½ÖÖ´¿ÒºÌå×é³ÉҺ̬ÍêÈ«»¥ÈܵįøÒºÆ½ºâϵͳ¡£ÔÚÒ»¶¨µÄζÈÏ£¬½«B(l) ¼ÓÈëÆ½ºâϵͳÖÐʱ£¬²âµÃϵͳµÄѹÁ¦Ôö´ó£¬ËµÃ÷´Ëϵͳ£¨ £©¡£ A. Ò»¶¨¾ßÓÐ×î´óÕýÆ«²î ; B. Ò»¶¨¾ßÓÐ×î´ó¸ºÆ«²î ; C. ¿ÉÄܾßÓÐ×î´óÕýÆ«²îÒ²¿ÉÄܾßÓÐ×î´ó¸ºÆ«²î; D. Êý¾Ý²»¹»£¬ÎÞ·¨È·¶¨ 9.ÔÚ318KÏ£¬±ûͪ(A)ºÍÂÈ·Â(B) ×é³ÉҺ̬»ìºÏÎïµÄÆøÒºÆ½ºâϵͳ£¬ÊµÑé²âµÃxB=0.3Ê±ÆøÏàÖбûͪµÄƽºâÕôÆø·ÖѹpA=26.77kPa,ÒÑ֪ͬζÈϱûͪµÄ±¥ºÍÕôÆøÑ¹¡£ p?A=43.063kPa,Ôò´ËҺ̬»ìºÏÎïΪ£¨ £© A.ÀíÏëҺ̬»ìºÏÎï ; B.¶Ô±ûͪ²úÉúÕýÆ«²î ; C.¶Ô±ûͪ²úÉú¸ºÆ«²î; D.ÎÞ·¨È·¶¨ 10.ÔÚζÈTÏ£¬A(l)ÓëB(l) ÐγÉÀíÏëҺ̬»ìºÏÎïµÄÆøÒºÆ½ºâϵͳ£¬ÒÑÖªÔÚ¸ÃζÈÏ£¬ ?A(l)ÓëB(l) µÄ±¥ºÍÕôÆøÑ¹Ö®±Èp?/pAB?5ʱ£¬Èô¸ÃÆøÒºÆ½ºâϵͳµÄÆøÏàÖÐBÖ®×é³É yB=0.5,ÔòƽºâÒºÏàÖеÄxB=£¨ £©¡£ A. 0.152 ; B. 0.167 ; C. 0.174; D.0.185 11.×é·ÖA(s)Óë×é·ÖB(s£©×é³ÉµÄÄý¾ÛϵͳÏàͼÖУ¬ÈôÒÑÖªÐγÉÒÔÏÂËÄÖÖ»¯ºÏÎ A2B(Îȶ¨),AB(Îȶ¨),AB2 (²»Îȶ¨),AB3 (Îȶ¨)Ôò¸ÃÏàͼÖÐÓУ¨ £©×îµÍ¹²ÈÛµãºÍ£¨ £©ÌõÈýÏàÏß¡£ A. 3£¬3 ; B. 4£¬4 ; C. 3£¬4 ; D. 4£¬5 12.NH4HS(s)ºÍÈÎÒ»Á¿µÄNH3(g)¼°H2S(g)´ïƽºâʱÓÐ( ). A. C=2,P=2,F=2 B. C=1,P=2,F=1 C. C=1,P=3,F=2 D. C=1,P=2,F=3 13.¶ÔÓÚºã·Ð»ìºÏÎï,ÏÂÁÐ˵·¨ÖдíÎóµÄÊÇ( ) A.²»¾ßÓÐÈ·¶¨×é³É; B.ƽºâÊ±ÆøÏà×é³ÉÓëÒºÏà×é³ÉÏàͬ C.Æä·ÐµãËæÍâѹµÄ±ä»¯¶ø±ä»¯; D. Ó뻯ºÏÎïÒ»Ñù¾ßÓÐÈ·¶¨×é³É 14.ÔÚ101.325kPaµÄѹÁ¦ÏÂ,I2ÔÚҺ̬ˮºÍCCl4Öдﵽ·ÖÅ䯽ºâ(ÎÞ¹Ì̬µâ´æÔÚ)Ôò¸ÃϵͳµÄÌõ¼þ×ÔÓɶÈÊýΪ( ). A. F¡¯=1 B. F¡¯=2 C. F¡¯=0 D. F¡¯=3 15.ÁòËáÓëË®¿ÉÐγÉH2SO4?H2O(s), H2SO4?2H2O(s), H2SO4?4H2O(s)ÈýÖÖ»ìºÏÎï,ÎÊÔÚ101325PaµÄѹÁ¦ÏÂ,ÄÜÓëÁòËáË®ÈÜÒº¼°±ùƽºâ¹²´æµÄÁòËáË®ºÏÎï×î¶à¿ÉÓжàÉÙÖÖ?( ) A.3ÖÖ B.2ÖÖ C.1ÖÖ D.²»¿ÉÄÜÓÐÁòËáË®ºÏÎïÓë֮ƽºâ¹²´æ 16.ijƽºâ´æÔÚC(s),H2O(g),CO(g),CO2(g)ºÍH2(g)ÎåÖÖÎïÖÊ,Ï໥½¨Á¢ÁËÏÂÊöÈý¸öƽºâ: H2O(g) + C(s) = H2(g) + CO(g) CO2(g) + H2(g) = H2O(g) + CO(g) CO2(g) + C(s) = 2CO(g) Ôò¸ÃϵͳµÄ¶ÀÁ¢×é·ÖÊýCΪ( ). A.3 B. 2 C. 1 D. 4 17.×é·ÖA(¸ß·Ðµã)Óë×é·ÖB(µÍ·Ðµã)ÐγÉÍêÈ«»¥ÈܵĶþ×é·Öϵͳ,ÔÚÒ»¶¨Î¶ÈÏÂ,Ïò´¿BÖмÓÈëÉÙÁ¿A ,ϵͳÕôÆøÑ¹Ôö´ó,Ôò´ËϵͳΪ( ) A.ÓÐ×î¸ßºã·ÐµãµÄϵͳ B.²»¾ßÓкã·ÐµãµÄϵͳ C.ÓÐ×îµÍºã·ÐµãµÄϵͳ D.ÎÞ·¨È·¶¨ ¶þ¡¢Ìî¿ÕÌâ 1.ÔÚÕæ¿ÕÈÝÆ÷ÖзÅÈë¹ýÁ¿µÄNH4I(s)ÓëNH4Cl(s),²¢·¢ÉúÒÔÏ·ֽⷴӦ£º NH4I(s) =NH3 (g) + HI(g) NH4Cl(s) =NH3 (g) + HCl(g) ´ïƽºâºó£¬ÏµÍ³µÄ×é·ÖÊýC=( ),ÏàÊýP=( ),×ÔÓɶÈÊýF=( ) 2.Na2CO3 (s)ÓëH2O(l)¿ÉÉú³ÉNa2CO3?H2O(s)£¬Na2CO3?7H2O(s), Na2CO3?10H2O(s),Ôò 30¡æÊ±£¬ÓëNa2CO3Ë®ÈÜÒº¡¢±ùƽºâ¹²´æµÄË®ºÏÎï×î¶àÓУ¨ £©ÖÖ¡£ 3.ÔÚ³é¿ÕµÄÈÝÆ÷ÖзÅÈëNH4HCO3 (s),·¢ÉúÈçÏ·´Ó¦£º NH4HCO3 (s) = NH3 (g) + CO2 (g) + H2O(g)ÇҴﵽƽºâ£¬ÔòÕâ¸öϵͳµÄ×é·ÖÊýC=( ),×ÔÓɶÈÊýF=( ). 4.½«Ò»¶¨Á¿NaCl(s)ÈÜÓÚË®ÖÐÐγɲ»±¥ºÍÈÜÒº£¬¼ÙÉèNaClÍêÈ«µçÀ룬H2O(l)¿É½¨Á¢µçÀëÆ½ºâ£¬Àë×ÓÎÞË®ºÏ·´Ó¦£¬ÔòϵͳµÄC=( );F=( ). 5.×ÔÓɶÈÊýµÄÎÄ×Ö¶¨ÒåΪ( ),ÏàÂɵÄÊýѧ±í´ïʽÊÇ£¨ £©¡£ 6.º¬ÓÐKNO3ÓëNaClµÄË®ÈÜÒºÓë´¿Ë®´ïÉøÍ¸Æ½ºâʱ£¬Æ½ºâÌåϵµÄ×ÔÓɶÈÊýΪ£¨ £©¡£ 7. NaHCO3 (s)ÔÚÕæ¿ÕÈÝÆ÷Öв¿·Ö·Ö½âΪNa2CO3 (s)¡¢H2O(g)ºÍCO2 (g)´ïƽºâʱ£¬¸ÃÌåϵµÄ¶ÀÁ¢×é·ÖÊý£¬ÏàÊý¼°×ÔÓɶȷֱðΪ( ). 8.ÔÚҺ̬ÍêÈ«»¥ÈܵÄÁ½×é·ÖA¡¢B×é³ÉµÄÆøÒºÆ½ºâϵͳÖУ¬Íâѹһ¶¨Ê±£¬ÓÚ¸ÃÆøÒºÆ½ºâϵͳÖмÓÈë×é·ÖB(l)ºó£¬ÏµÍ³µØ·ÐµãϽµ£¬Ôò¸Ã×é·ÖÔÚÆ½ºâÆøÏàÖеÄ×é³ÉyB( )ËüÔÚÒºÏàÖеÄ×é³ÉxB 9.A(l)ºÍB(l)ÐγÉÀíÏëҺ̬»ìºÏÎÔÚζÈTÏ£¬´¿A(l)µÄ±¥ºÍÕôÆûѹΪPA*,´¿B(l)µÄ±¥ºÍÕôÆûѹΪPB*=5PA*¡£ÔÚÒ»¶¨Î¶ÈÏ£¬½«A(l)ºÍB(l)»ìºÏ³ÉÒ»ÆøÒºÆ½ºâϵͳ£¬²âµÃÆä×ÜѹΪ2PA*,´ËʱƽºâÆøÏàÖÐBµÄĦ¶û·ÖÊýyB=( ) 10.¶ÔÈý×é·ÖÏàͼ£¬×î¶àÏàÊýΪ£¨ £©£»×î´ó×ÔÓɶÈÊýΪ£¨ £©£»ËüÃÇ·Ö±ðÊÇ£¨ £©µÈÇ¿¶È±äÁ¿¡£ 11.ÔÚζÈTÏ£¬A¡¢BÁ½×é·ÖÔÚÒºÏàÍêÈ«»¥ÈÜ£¬¶øÇÒËüÃǵı¥ºÍÕôÆøÑ¹·Ö±ðΪPA*ÓëPB*£¬ÇÒPA*>PB*.ÔÚÒ»¶¨Î¶ÈÏ£¬ÓÉA¡¢B×é³ÉµÄÆøÒºÆ½ºâϵͳ£¬µ±ÏµÍ³×é³ÉXB<0.3ʱ£¬ÍùϵͳÖмÓÈëB(l)ÔòϵͳѹÁ¦Ôö´ó£»·´Ö®£¬µ±ÏµÍ³×é³ÉXB>0.3ʱ£¬ÍùϵͳÖмÓÈëB(l)ÔòϵͳѹÁ¦½µµÍ£¬ÕâÒ»½á¹û˵Ã÷ϵͳ¾ßÓУ¨ £©ºã·Ðµã¡£ 12.ÔÚ1000KÏ£¬¶à×é·Ö¶àÏàÆ½ºâϵͳÖÐÓÐC(ʯ£¬CO2 (g), CO(g) ¼°O2 (g)¹²´æ£¬¶øÇÒËüÃÇ¼ä´æÔÚÒÔÏ»¯Ñ§·´Ó¦£º C(ʯī) + O2 (g) = CO2 (g) C(ʯī) + 1/2O2 (g) = 1/2CO(g) CO(g) + 1/2O2 (g) = CO2 (g) C(ʯī) + CO2 (g) = 2CO(g)£¬Ôò´ËƽºâϵͳµÄ×é·ÖÊýC=£¨ £©£¬P=£¨ £©£¬F=£¨ £© 13.Ò»°ãÓлúÎï¿ÉÒÔÓÃË®ÕôÆøÕôÁó·¨Ìá´¿,µ±ÓлúÎïµÄ( )ºÍ( )Ô½´óʱ,Ìá´¿Ò»¶¨ÖÊÁ¿ÓлúÎïÐèÓõÄË®ÕôÆøÔ½ÉÙ. 14.Ò»¸ö´ïµ½Æ½ºâµÄϵͳÖÐÓÐZnO(s),Zn(s),CO(g),CO2(g),C(s)ÎåÖÖÎïÖÊ,Ôò¸ÃϵͳµÄ¶ÀÁ¢×é·ÖÊýΪ( ),×ÔÓɶÈÊý( ). Èý¡¢ÅжÏÌâ 1.ÔÚͨ³£Çé¿öÏÂ,¶þ×é·ÖϵͳÄÜÆ½ºâ¹²´æµÄ×î¶àÏàÊÇ4Ïà¡£( ) 2.¶þ×é·ÖÀíÏëҺ̬»ìºÏÎïµÄÕôÆø×ÜѹÁ¦½éÓÚ¶þ´¿×é·ÖµÄÔöÆøÑ¹Ö®¼ä¡£( ) 3.Ë«×é·ÖÏàͼÖкã·Ð»ìºÏÎïµÄ×é³ÉËæÍâѹµÄ²»Í¬¶ø¸Ä±ä²»Í¬¡£( ) 4.ÒÀ¾ÝÏàÂÉ£¬ºã·Ð»ìºÏÎïµÄ·Ðµã²»ËìÍâѹµÄ¸Ä±ä¶ø¸Ä±ä¡£( ) 5.ÒÀ¾ÝÏàÂÉ£¬´¿ÒºÌåÔÚÒ»¶¨Î¶ÈÏ£¬ÕôÆøÑ¹Ó¦¸ÃÊǶ¨Öµ¡£( ) 6.ÏàÊÇָϵͳ´¦ÓÚÆ½ºâʱ£¬ÎïÀíÐÔÖʺͻ¯Ñ§ÐÔÖʶ¼¾ùÔȵIJ¿·Ö¡£( ) 7.¶þ×é·ÖÀíÏëҺ̬»ìºÏÎïµÄ×ÜÕôÆûѹ´óÓÚÈÎÒâ´¿×é·ÖµÄÕôÆûѹ¡£( ) 8.ÔÚÒ»¶¨Î¶ÈÏ£¬ÓÉ´¿ÒºÌ¬µÄAºÍBÐγÉÀíÏëҺ̬»ìºÏÎÒÑÖªPA* 9.ÔÚÒ»¶¨Ñ¹Á¦Ï£¬A-B¶þ×é·ÖÈÜÒºµÄζÈ-×é³ÉͼµÄ×î¸ß£¨»ò×îµÍ£©ºã·Ðµã´¦£¬Æø-ÒºÁ½Ïà×é³ÉÏàµÈ¡£( ) 10.ÔÚÒ»¶¨Ñ¹Á¦Ï£¬ÈôÔÚA-B¶þ×é·ÖµÄζÈ-×é³ÉͼÖгöÏÖ×î¸ßºã·Ðµã£¬ÔòÆäÕôÆø×Üѹ¶ÔÀÎÚ¶û¶¨ÂɱزúÉú×î´ó¸ºÆ«²î¡£( ) 11.Ë®µÄ±ùµãºÍÈýÏàµãûÓÐÇø±ð¡£( ) 12.ºã·Ð»ìºÏÎïÓ뻯ºÏÎïÒ»Ñù,¾ßÓÐÈ·¶¨µÄ×é³É¡£( ) 13.Ò»¸öÏàÆ½ºâϵͳ×îÉÙµÄÏàÊýP=1,×îСµÄ×ÔÓɶÈÊýF=0¡£( ) 14.¶þ×é·Ö·Ðµã-×é³ÉͼÖÐ,´¦ÓÚ×î¸ß»ò×îµÍºã·ÐµãʱµÄ״̬,ÆäÌõ¼þ×ÔÓɶÈÊýF¡¯=0.( ) Ñ¡ÔñÌâ´ð°¸: 1.A;2.C;3.B;4.B;5C;6.C;7.B;8.C;9.C;10.B;11.D;12.A;13.D;14.B;15.C;16.A; 17.C Ìî¿ÕÌâ´ð°¸: 1. C=2£¬P=3£¬F=1;2. Ò»ÖÖ;3. C=1£¬F=1;4. 2£»3;5. Äܹ»Î¬³ÖϵͳÔÓÐÏàÊý¶ø¿ÉÒÔ¶ÀÁ¢¸Ä±äµÄ±äÁ¿Êý£¬F=C- P+2;6. F=4;7. C=2£¬P=3£¬F=1;8.>;9.0.625;10. 5£¬4£»Î¶ȡ¢Ñ¹Á¦¼°Á½¸ö×é³É;11.×î¸ßºã·Ðµã;12.C=2£¬P=2£¬F=1;13.±¥ºÍÕôÆøÑ¹,Ħ¶ûÖÊÁ¿;14.3,1 ÅжÏÌâ´ð°¸: 1. ¡Ì;2. ¡Ì; 3. ¡Ì; 4. ¡Á;5. ¡Ì;6; ¡Ì; 7.¡Á;8. ¡Ì;9. ¡Ì;10. ¡Ì;11. ¡Á;12. ¡Á;13 ¡Ì;14. ¡Ì ËÄ¡¢¼ÆËãÌâ 1.Ö¸³öÏÂÁÐÆ½ºâϵͳÖеÄ×é·ÖÊýC,ÏàÊýP¼°×ÔÓɶÈÊý. (1)I2(s)ÓëÆäÕôÆø³Éƽºâ; (2)CaCO3(s)ÓëÆä·Ö½â²úÎïCaO(s)ºÍCO2(g)³Éƽºâ; (3)NH4HS(s)·ÅÈëÒ»³é¿ÕµÄÈÝÆ÷ÖÐ,²¢ÓëÆä·Ö½â²úÎïNH3(g)ºÍH2S(g)³Éƽºâ; (4)È¡ÈÎÒâÁ¿µÄNH3(g)ºÍH2S(g)ÓëNH4HS(s)³Éƽºâ; (5)I2×÷ΪÈÜÖÊÔÚÁ½²»»¥ÈÜÒºÌåH2OºÍCCl4Öдﵽ·ÖÅ䯽ºâ(Äý¾Ûϵͳ). Please find C=£¿P=? and f =? in the following equilibrium systems. (1)I2(s) is equilibrium with it¡¯s vapor ; (2)CaCO3(s) is partially decomposed in equilibrium with CaO(s) and CO2(g); (3)NH4HS(s) is partially decomposed in equilibrium with NH3(g) and H2S(g) in a vacuum container; (4) NH4HS(s) is in equilibrium with arbitrary NH3(g) and H2S(g); (5)Put I2 as solute in immiscible liquid H2O and CCl4, reaching distribution equilibrium(condensed system). ´ð°¸: (1)1,2,1;(2) 2,3,1;(3) 1,2,1; (4)2,2,2; (5)3,2,2 2.ÒÑÖªÒºÌå¼×±½(A)ºÍÒºÌå±½(B)ÔÚ90¡æÊ±µÄ±¥ºÍÕôÆøÑ¹·Ö±ðΪp?A?54.22kPaºÍ ?pB?136.12kPa.Á½Õß¿ÉÐγÉÀíÏëҺ̬»ìºÏÎï.½ñÓÐϵͳ×é³ÉΪxB,0?0.3µÄ¼×±½-±½ »ìºÏÎï5mol,ÔÚ90¡æÏÂ³ÉÆø-ÒºÁ½ÏàÆ½ºâ,ÈôÆøÏà×é³ÉΪyB?0.4556,Çó: (1)ƽºâʱҺÏà×é³ÉxB¼°ÏµÍ³µÄѹÁ¦p; (2)ƽºâÊ±Æø-ÒºÁ½ÏàµÄÎïÖʵÄÁ¿n(l),n(g). At 90 ¡æ, toluene(A) and benzene(B) can form ideal liquid mixture. The saturated vapor pressure of them is 54.22kPa and 136.13kPa respectively, Now 5 mol mixture of them withxB,0?0.3,when g-l reaches equilibrium at 90¡æ,the the composition of the gas phase is yB?0.4556,please Calculate : (1) how the composition of the liquid phasexB and total pressure of system p. (2) The amout of substance n(l),n(g) when g-l reach equilibrium ´ð°¸: (1)xB?0.2500,p?74.70kPa;(2)n?l??3.784mol,n?g??1.216mol 3. .ÒÑÖªÒºÌå¼×±½(A)ºÍÒºÌå±½(B)ÔÚ90¡æÊ±µÄ±¥ºÍÕôÆøÑ¹·Ö±ðΪp?A?54.22kPaºÍ ?pB?136.12kPa.Á½Õß¿ÉÐγÉÀíÏëҺ̬»ìºÏÎï.È¡200.0g¼×±½ºÍ200.0g±½ÖÃÓÚ´ø»îÈû µÄµ¼ÈÈÈÝÆ÷ÖÐ,ʼ̬Ϊһ¶¨Ñ¹Á¦ÏÂ90¡æµÄҺ̬»ìºÏÎï.ÔÚºãÎÂ90¡æÏÂÖð½¥½µµÍѹÁ¦,ÎÊ: (1)ѹÁ¦½µµ½¶àÉÙʱ,¿ªÊ¼²úÉúÆøÏà,´ËÆøÏàµÄ×é³ÉÈçºÎ? (2)ѹÁ¦½µµ½¶àÉÙʱ,ÒºÏ࿪ʼÏûʧ,×îºóÒ»µÎÒºÏàµÄ×é³ÉÈçºÎ? (3)ѹÁ¦Îª92.00kPaʱ,ϵͳÄÚÆø-ÒºÁ½ÏàÆ½ºâ,Á½ÏàµÄ×é³ÉÈçºÎ?Á½ÏàÎïÖʵÄÁ¿¸÷Ϊ¶àÉÙ? At 90 ¡æ, toluene(A) and benzene(B) can form ideal liquid mixture. The saturated vapor pressure of them is 54.22kPa and 136.13kPa respectively, If 200.0g C7H8 and 200.0g C6H6 was put into a thermal conducting container with a piston, keep the temperature of 90 ¡æand decrease the pressure gradually, Calculate : (1)How much the pressure is,when the gas begins to product?And how the composition of the gas phase is? (2)How much the pressure is, when the liquid begins to disappear?And how the composition of the last drop of liquid is? (3)If the pressure is 92kPa, how the gas-liquid composition in the system is?And how much the amount of substance both gas and liquid phase? ´ð°¸: (1)p?98.54kPa,yB?0.7476;?2?p?80.40kPa,xB?0.3197;(3)n?l??3.022mol,n?g??1.709mol 4.ÒÑ֪ˮ-±½·ÓϵͳÔÚ30¡æÒº-Һƽºâʱ¹²éîÈÜÒºµÄ×é³Éw(±½·Ó)Ϊ:L1(±½·ÓÈÜÓÚË®),8.75%;L2(Ë®ÈÜÓÚ±½·Ó),69.9%. (1)ÔÚ30¡æ,100g±½·ÓºÍ200gË®ÐγɵÄϵͳ´ïÒº-Һƽºâʱ,Á½ÒºÏàµÄÖÊÁ¿¸÷Ϊ¶àÉÙ? (2)ÔÚÉÏÊöϵͳÖÐÈôÔÙ¼ÓÈë100g±½·Ó,ÓÖ´ïµ½ÏàÆ½ºâʱ,Á½ÒºÏàµÄÖÊÁ¿¸÷Ϊ¶àÉÙ? Given that C6H5OH and H2O reaches liquid-liquid equilibrium at 30¡æ, the composition of the two conjugate solutions of this system are w(C6H5OH£¬L1)= 8.75%£¬w(C6H5OH£¬L2)= 69.9% respectively. (1) At 30¡æ,t he system formed by 100g C6H5OH and 200g H2O reaches liquid-liquid equilibrium ,please calculate the mass of the two liquid phase. (2) If 100g C6H5OH was added into the above system ,when the system reaches liquid-liquid equilibrium again, please calculate the mass of the two liquid phase. ´ð°¸: (1)m?L1??179.6g,m?L2??120.4g;?2?m?L1??130.2g,m?L2??269.8g 6.ÀûÓÃÏÂÁÐÊý¾Ý,´ÖÂÔµØÃè»æ³öMg-Cu¶þ×é·ÖÄý¾ÛϵͳÏàͼ,²¢±ê³ö¸÷ÇøµÄÎȶ¨Ïà.ÒÑÖªMgºÍCuµÄÈÛµã·Ö±ðΪ648¡æ,1085¡æ.Á½Õß¿ÉÐγÉÁ½ÖÖÎȶ¨»¯ºÏÎï,Mg2Cu,MgCu2,ÆäÈÛµãÒÀ´ÎΪ580¡æ,800¡æ.Á½ÖÖ½ðÊôÓëÁ½ÖÖ»¯ºÏÎïËÄÕßÖ®¼äÐγÉÈýÖֵ͹²ÈÛ»ìºÏÎï.µÍ¹²ÈÛ»¯ºÏÎïµÄ×é³É¼°ÈÛµã¶ÔӦΪ:35%,380¡æ;66%,560¡æ;90.6%,680¡æ. Using the data below, a rough describe Mg-Cu two component condensing system phase diagram and point out the stable phase of every region. Given Melting point of Mg and Cu is 648¡æ and 1085¡æ respectively.They can form of two stable compounds Mg2Cu and MgCu2 whose melting point are 580¡æ,800¡æ respectively. Two metal and two compounds can form three kinds of eutectic mixture.Composition of eutectic mixture w(Cu) and eutectic point corresponding are: 35%,380¡æ;66%,560¡æ;90.6%,680¡æ. 7.AºÍB¹Ì̬ʱÍêÈ«²»»¥ÈÜ£¬102325PaʱA(s)µÄÈÛµãΪ30¡æ£¬B(s)µÄÈÛµãΪ50¡æ£¬AºÍBÔÚ10¡æ¾ßÓÐ×îµÍ¹²È۵㣬Æä×é³ÉΪxB,E=0.4£¬ÉèAºÍBÏ໥Èܽâ¶È¾ùΪֱÏß¡£ (1)»³ö¸ÃϵͳµÄÈÛµã-×é³Éͼ(t-xBͼ)£» (2)½ñÓÉ2molAºÍ8molB×é³Éһϵͳ£¬¸ù¾Ý»³öµÄt-xBͼ£¬ÁÐ±í»Ø´ðϵͳÔÚ5¡æ£¬ 30¡æ£¬50¡æÊ±µÄÏàÊý¡¢ÏàµÄ¾Û¼¯Ì¬¼°³É·Ö¡¢¸÷ÏàµÄÎïÖʵÄÁ¿¡¢ÏµÍ³ËùÔÚÏàÇøµÄÌõ¼þ×ÔÓɶȡ£ A and B are immiscible in solid phase, at p=101325Pa, the melting point of A and B are30?C and 50?C respectively. A and B has the lowest cocrystalline point at 10¡æ, its component is xB,E=0.4,supposing the dissolving line is straight line. (1)Draw melting point-composition diagram (t-xB)of this system. (2)Now the system formed by 2mol A and 8mol B , according to (t-xB)Phase diagram, list table and write P , state of aggregation(g, l or s) and ingredient of phase, amount of the phases and f ¡¯ of regions when the system temperature is 5¡æ£¬ 30¡æ£¬50¡æ respectivly . ´ð°¸: (2) ϵͳµÄζÈ/¡æ 5 30 50 ÏàÊý 2 2 1 ÏàµÄ¾Û¼¯Ì¬¼°³É·Ö S(A)+ S(B) l(A+B)+ S(B) l(A+B) ¸÷ÏàµÄÁ¿ nA=2mol nB=8mol nl=6.67mol nB=3.33mol nl=10mol ϵͳËùÔÚÏàÇøµÄF¡¯ 1 1 2 8. AºÍBÔÚҺ̬²¿·Ö»¥ÈÜ£¬AºÍBÔÚ100kPaϵķеã·Ö±ðΪ100? CºÍ120?C£¬¸Ã¶þ×é·ÖµÄÆø¡¢ÒºÆ½ºâÏàͼÈçͼËùʾ£¬ÇÒÖªC£¬E£¬DÈý¸öÏàµãµÄ×é³É·Ö±ðΪxB,C = 0.05, yB,E = 0.60£¬ xB,D = 0.97 (1)ÊÔ½«Í¼Öи÷ÏàÇø¼°CEDÏßËù´ú±íµÄÏàÇøµÄÏàÊý¡¢¾Û¼¯Ì¬¼°³É·Ö£¨¾Û¼¯Ì¬ÓÃg£¬l¼°s±íÊ¾Æø¡¢Òº¼°¹Ì£»³É·ÖÓÃA£¬B»òA+B±íʾ£©¡¢Ìõ¼þ×ÔÓɶÈf ¡¯Áгɱí¸ñ£» (2)ÊÔ¼ÆËã3mol BÓë7mol AµÄ»ìºÏÎÔÚ100kPa£¬80?C´ï³ÉƽºâÊ±Æø¡¢ÒºÁ½Ïà¸÷ÏàµÄÎïÖʵÄÁ¿¸÷Ϊ¶àÉÙĦ¶û£¿ A and B are partially miscible in liquid phase, at p=100kPa, the boiling point are100?C and 120?C respectively. In the gas-liquid equilibrium phase diagram, the composition of phase point C, E and D are xB,C = 0.05, yB,E = 0.60 and xB,D = 0.97 respectively. (1) list table and write P , state of aggregation(g, l or s) and ingredient(A, B or A+B) of phase and f ¡¯ of all regions and CED line. (2) mixture formed by 3mol B and 7mol A reaches gas-liquid equilibrium at 100kPa£¬80?C . Please calculate n(l) and n(g). ´ð°¸: n (g) = 5.7 mol n ( l ) = 4.3 mol 9.ÈçͼËùʾ£¬ÔÚ101.325 kPa Ï£¬A£¬B ¶þ×é·ÖҺ̬ÍêÈ«»¥ÈÜ£¬¹Ì̬ÍêÈ«²»»¥ÈÜ£¬ÆäµÍ¹²ÈÛ»ìºÏÎïwB= 0.60 ½ñÓÐ180 g£¬wB= 0.40 µÄÈÜÒº£¬ÊԻش𣺠£¨1£©Àäȴʱ£¬×î¶à¿ÉµÃ¶àÉÙ¿Ë´¿A(s)£¿ £¨2£©ÔÚÈýÏàÆ½ºâʱ£¬ÈôµÍ¹²ÈÛ»ìºÏÒºµÄÖÊÁ¿Îª60 g ,ÓëÆäƽºâµÄ¹ÌÌåA¼°B¸÷Ϊ¶àÉÙ¿Ë£¿ As shown in the diagram, A and B are miscible in liquid phase and immiscible in solid phase at p=101.325kPa, the lowest cocrystalline component is wB= 0.60, Now 180g solution with wB= 0.40.Calculate: (1)How much pure A(s) we can get when the solution was cooled. (2) the amount of A and B when the system reaches triple phase equilibrium and the mass of the lowest cocrystalline solution is 60g. ´ð°¸: (1) µÃµ½60g´¿A(s);(2) ÈôµÍ¹²ÈÛ»ìºÏÎïµÄÖÊÁ¿Îª60gʱ£¬ÓëÆäƽºâµÄ¹Ì ÌåAΪ84g ¹ÌÌåBΪ36g 10. ͼΪA£¬B¶þ×é·ÖÄý¾ÛϵͳƽºâÏàͼ¡£tA*£¬tB* ·Ö±ðΪA£¬B µÄÈ۵㡣 £¨1£©Çë¸ù¾ÝËù¸øÏàͼÁбíÌîдI ÖÁ VI ¸÷ÏàÇøµÄÏàÊý¡¢ÏàµÄ¾Û¼¯Ì¬¼°³É·Ö¡¢Ìõ¼þ×ÔÓɶÈÊý£» £¨2£©ÏµÍ³µãa0 ½µÎ¾¹ýa1£¬a2£¬a3£¬a4£¬Ð´³öÔÚa1£¬a2£¬a3 ºÍa4µãϵͳÏà̬·¢ÉúµÄ±ä»¯²¢»³ö²»ÀäÇúÏß¡£ It¡¯s the phase diagram of A and B. tA*£¬tB* is the melting point of A and B respectively. (1) According to the phase diagram, list table and write P , state of aggregation(g, l or s) and ingredient(A, B or A+B) of phase and f ¡¯ of regions from I to VI. (2) The system point pass through a1£¬a2£¬a3£¬a4 when cooling, write out the system phase state changes at point a1£¬a2£¬a3,a4 and draw the cooling curve. ´ð°¸: (2) a1 µã£ºl a1 s(B)£¨¶þÏ๲´æ£©£»a 2 µã£ºlp + s(B) s(C) ( ÈýÏ๲´æ ) a 3 µã£ºlE s(A)+s(C) ( ÈýÏ๲´æ )£» a 4 µã£ºs(A) s(C) ( ¶þÏ๲´æ ) 11. AºÍBÐγÉÏàºÏÈ۵㻯ºÏÎïAB£ºA£¬B£¬AB ÔÚ¹Ì̬ʱÍêÈ«²»»¥ÈÜ£»A£¬AB£¬B µÄÈÛµã·Ö±ðΪ200?C£¬300?C£¬400?C£¬AÓëAB¼°ABÓëBÐγɵÄÁ½¸öµÍ¹²ÈÛµã·Ö±ðΪ150?C£¬xB,E1=0.2 ºÍ250?C£¬xB,E2=0.8¡£ £¨1£©»³öÒÔÉÏÊöϵͳµÄÈÛµã-×é³É£¨t-xB£©Í¼£» £¨2£©»³öÒÔÏÂÁ½Ìõ²½ÀäÇúÏߣºxB=0.1µÄϵͳ´Ó200 ?CÀäÈ´µ½100 ?C£¬¼°xB=0.5 µÄϵͳ´Ó400 ?CÀäÈ´µ½200?C£» £¨3£©8 mol BºÍ12 mol A »ìºÏÎïÀäÈ´µ½ÎÞÏÞ½Ó½ü150 ?Cʱ£¬ÏµÍ³ÊÇÄļ¸ÏàÆ½ºâ£¿ ¸÷ÏàµÄ×é³ÉÊÇʲô£¿¸÷ÏàÎïÖʵÄÁ¿ÊǶàÉÙ£¿ A and B can form a stable compounds AB: A,B and AB are immiscible in solid phase; The melting point of A, AB and B are 200¡æ,300¡æand 400¡æ respectively. A andAB, B and ABcan form two lowest eutectic mixtures. eutectic point and composition of eutectic mixture corresponding are: 150?C£¬xB,E1=0.2 and 250?C£¬xB,E2=0.8. (1) Draw melting point-composition diagram (t-xB)of the above system.; (2) draw the cooling curve of the following two system: system with xB=0.1 cooling from 200 ?C to 100 ?C and system with xB=0.5 cooling from 400 ?C to 200 ?C. (3) mixture formed by 8 mol B and 12 mol A cooling nearly to 150 ?C, how many phases are in equilibrium? the component of every phase? how much the amount of substance of every phase? ´ð°¸: (3) nS ( AB )=12.34mol ,n l ( A+B ) =6.67 mol 12.ͼΪA£¬B ¶þ×é·ÖÆø¡¢ÒºÆ½ºâϵͳÏàͼ£¬ºá×ø±êΪBµÄÖÊÁ¿·ÖÊý¡£ £¨1£©Ð´³öͼÖТ٣¬¢Ú£¬¢Û£¬¢Ü£¬¢Ý£¬¢Þ¸÷ÇøµÄÏà̬¼°³É·Ö£» £¨2£©10.8 kg ´¿A ÒºÌåÓë72 kg ´¿BÒºÌå»ìºÏÎï¼ÓÈÈ£¬µ±Î¶ÈÎÞÏÞ½Ó½üt1£¨t=t1+dt£©Ê±£¬ÓÐÄöÏàÆ½ºâ¹²´æ£¿¸÷ÏàÖÊÁ¿ÊǶàÉÙ£¿ £¨3£©µ±Î¶ȸոÕÀ뿪t1£¨t=t1+dt£©Ê±£¬ÓÖÓÐÄöÏàÆ½ºâ¹²´æ£¿¸÷ÏàÖÊÁ¿ÊǶàÉÙ£¿ It is two component phase gas-liquid equilibrium phase diagram of A and B, the X-axial represents the mass fraction of B. (1) write out the state of aggregation and ingredient of ¢Ù£¬¢Ú£¬¢Û£¬¢Ü£¬¢Ý£¬¢Þ regions in the diagram. (2) The mixture formed by 10.8 kg pure liquid A and 72 kg pure liquid B was heated, when the temperature was closed nearly to t1£¨t=t1+dt£©, how many phases are in equilibrium? How much the amount of substance of every phase? (3) When the temperature leaved t1£¨t=t1+dt£©just now, how many phases are in equilibrium? How much the amount of substance of every phase? ´ð°¸: (2)m (l2) = 6.98 kg m (l1) = 11.02 kg; (3 )µ±Î¶ȸոոßÓÚt1ʱ£¬ÏµÍ³ÎªÆø£¬ÒºÁ½ÏàÆ½ºâ¹²´æ¡£m (l1) = 12.2 kg, m (G) = 5.8 kg µÚÆßÕ µç»¯Ñ§ Ò»¡¢Ñ¡ÔñÌâ 1£®K2SO4 (0.005mol/kg)ÈÜÒºµÄÀë×ÓÆ½¾ù»î¶ÈϵÊý¦Ã¡À£½£¨ £© A£®0.450 B£®0.776 C£®1.120 D£®0.910 2£®ÔÚ25¡æÊ±£¬0.002 mol¡¤kg?1µÄCaCl2ÈÜÒºµÄÀë×ÓÆ½¾ù»î¶ÈÒò×Ó(?¡À)1Óë0.002 mol¡¤kg?1 µÄCaSO4ÈÜÒºµÄÀë×ÓÆ½¾ù»î¶ÈÒò×Ó(?¡À)2µÄ¹ØÏµÊÇ£¨£©¡£ A.(?¡À)1 > (?¡À)2 B. (?¡À)1 < (?¡À)2 C.(?¡À)1 = (?¡À)2 D.(?¡À)1Óë (?¡À)2ÎÞ·¨±È½Ï 3£®ÏÂÁÐÎïÖʵÄË®ÈÜÒº£¬ÔÚÒ»¶¨Å¨¶ÈÏ£¬ÆäÕýÀë×ÓµÄÇ¨ÒÆÊýÈçÏÂËùÁУ¬Ñ¡ÓÃÄÄÒ»ÖÖÎïÖÊ×öÑÎÇÅ£¬¿Éʹˮϵ˫Һµç³ØµÄÒºÌå½Ó½çµçÊÆ¼õÖÁ×îС£¿£¨ £©¡£ A£®BaCl2(t(Ba2+)=0.4253) B£®NaCl(t(Na+)=0.3854 C£®KNO3(t(K+)=0.5103) D£®AgNO3(t(Ag+)=0.4682) 4£®¿Æ¶ûÀÍÐíÀë×Ó¶ÀÁ¢Ô˶¯¶¨ÂÉÊʺÏÓÚ£¨£©¡£ A£®ÈÎÒâŨ¶ÈµÄÇ¿µç½âÖÊÈÜÒº B£®ÈÎÒâŨ¶ÈµÄÈõµç½âÖÊÈÜÒº C£®ÎÞÏÞÏ¡±¡µÄÇ¿»òÈõµç½âÖÊÈÜÒº D£®ÈÎÒâŨ¶ÈµÄÇ¿»òÈõµç½âÖÊÈÜÒº 5£®µç½âÖÊÈÜÒºµÄµçµ¼ÂÊËæÅ¨¶È±ä»¯µÄ¹æÂÉΪ£¨£©¡£ A£®ËæÅ¨¶ÈÔö´ó¶øµ¥µ÷µØÔö´ó B£®ËæÅ¨¶ÈÔö´ó¶øµ¥µ÷µØ¼õС C£®ËæÅ¨¶ÈÔö´ó¶øÏÈÔö´óºó¼õС D£®ËæÅ¨¶ÈÔö´ó¶øÏȼõСºóÔö´ó 6£®Ôµç³ØÔÚ¶¨Î¶¨Ñ¹¿ÉÄæµÄÌõ¼þÏ·ŵçʱ£¬ÆäÔÚ¹ý³ÌÖÐÓë»·¾³½»»»µÄÈÈÁ¿Îª£¨£©¡£ A£®?rHm B£®Áã C£®T?rSm D£®?rGm 7£®298Kʱ£¬µç³Ø·´Ó¦H2(g) + (1/2)O2(g) == H2O(l) Ëù¶ÔÓ¦µÄµç³Ø±ê×¼µç¶¯ÊÆÎªE¦È1£¬¶ø·´Ó¦2H2O(l) == 2H2(g) + O2(g) Ëù¶ÔÓ¦µÄµç³Ø±ê×¼µç¶¯ÊÆE¦È2£¬ÔòE¦È2ºÍE¦È1µÄ¹ØÏµÎª£¨£©¡£ A£®E¦È2 = ?2 E¦È1 B£®E¦È2 = 2 E¦È1 C£®E¦È2 = ? E¦È1 D£®E¦È2 = E¦È1 8£®ÔÚÏÂÁÐµç³ØÖУ¬Æäµç³ØµÄµç¶¯ÊÆÓëÂÈÀë×ӵĻî¶Èa(Cl?)Î޹صÄÊÇ£¨£©¡£ A£®Zn(s) | ZnCl2(aq) | Cl2(p) | Pt B£®Zn(s) | ZnCl2(aq) || KCl(aq) | AgCl(s) | Ag (s) C£®Pt | H2(p1) | HCl(aq) | Cl2(p2) | Pt D£®Ag(s) | AgCl(s) | KCl(aq) | Cl2(p) | Pt 9£®ÔÚ25¡æÊ±£¬µç³ØPb/Hg(a1) | Pb(NO3)2(aq) | Pb/Hg (a2)ÖÐa1 ? a2£¬ÔòÆäµç¶¯ÊÆE£¨£©¡£ A£®? 0 B£®? 0 C£®= 0 D£®ÎÞ·¨È·¶¨ 10£®Ðîµç³ØÔÚ³äµçºÍ·ÅµçʱµÄ·´Ó¦ÕýºÃÏà·´£¬ÔòÆä³ä¡¢·ÅµçʱÕý¼«ºÍ¸º¼«¡¢Òõ¼«ºÍÑô¼«µÄ¹ØÏµÎª£¨£©¡£ A£®Õý¸º¼«²»±ä£¬ÒõÑô¼«²»±ä B£®Õý¸º¼«²»±ä£¬ÒõÑô¼«ÕýºÃÏà·´ C£®Õý¸º¼«¸Ä±ä£¬ÒõÑô¼«²»±ä D£®Õý¸º¼«¸Ä±ä£¬ÒõÑô¼«ÕýºÃÏà·´ 11£®ÈôÏÂÁеç½âÖÊÈÜÒºÖÐÈÜÖÊBµÄÖÊÁ¿Ä¦¶ûŨ¶È¶¼Îª0.01 mol¡¤kg?1£¬ÔòÀë×ÓÆ½¾ù»î¶ÈÒò×Ó×îСµÄÊÇ£¨£©¡£ A£®ZnSO4 B£®CaCl2 C£®KCl D£®Na2SO4 12£®0.001 mol¡¤kg?1K3[Fe(CN)6]Ë®ÈÜÒºµÄÀë×ÓÇ¿¶È£¨µ¥Î»£ºmol¡¤kg?1£©Îª£¨£©¡£ A£®6.0¡Á10?3 B£®5.0¡Á10?3 C£®4.5¡Á10?3 D£®3.0¡Á10?3 13£®µç½âÖÊÈÜÒºµÄÀë×ÓÇ¿¶ÈÓëÆäŨ¶ÈµÄ¹ØÏµÎª£¨£©¡£ A£®Å¨¶ÈÔö´ó£¬Àë×ÓÇ¿¶ÈÔö´ó B£®Å¨¶ÈÔö´ó£¬Àë×ÓÇ¿¶È±äÈõ C£®Å¨¶È²»Ó°ÏìÀë×ÓÇ¿¶È D£®ËæÅ¨¶È±ä»¯£¬Àë×ÓÇ¿¶È±ä»¯ÎÞ¹æÂÉ 14£®ÒÑÖªÏÂÁÐÁ½µç³ØµÄ±ê×¼µç¶¯ÊÆ·Ö±ðΪE1?ºÍE2?£º Pt | H2(p) | H?(a1) || Fe3?(a2), Fe2?(a3) | Pt (1£© Pt | H2(p) | H?(a1) || Fe3?(a2) | Fe(s) (2£© ÄÇô£¬Ôµç³ØPt | H2(p) | H?(a1) || Fe2?(a3) | Fe(s) (3£©µÄ±ê×¼µç¶¯ÊÆE3?ÓëE1?ºÍ¡£ E2?µÄ¹ØÏµÎª£¨£© A£®2E3?= 3E1??E2? B£®2E3?= 3E2??E1? C£®E3?=E1?¡ÁE2? D£®E3?=E1?/E2? 15£®ÔÚ¶¨Î¡¢¶¨Ñ¹µÄµç³Ø·´Ó¦ÖУ¬µ±·´Ó¦´ïµ½Æ½ºâʱ£¬µç³ØµÄµç¶¯ÊƵÈÓÚ£¨£©¡£ A£®Áã B£®E? C£®²»Ò»¶¨ D£®ËæÎ¶ȡ¢Ñ¹Á¦µÄÊýÖµ¶ø±ä»¯ 16£®ÒÑÖª25¡æÊ±£¬E?(Fe3?, Fe2?) = 0.77 V£¬E?(Sn4?, Sn2?) = 0.15 V¡£½ñÓÐÒ»µç³Ø£¬Æäµç³Ø·´Ó¦Îª2Fe3?(a) + Sn2?(a) = 2Fe2?(a) + Sn4?(a)£¬Ôò¸Ãµç³ØµÄ±ê×¼µç¶¯ÊÆEMF(298.15 K)Ϊ£¨£©¡£ A£®1.39 V B£®0.62 V C£®0.92 V D£®1.07 V 17£®µç³ØHg(l) | Zn(a1) | ZnSO4(a2) | Zn(a3) | Hg(l)µÄµç¶¯ÊÆ£¨£©¡£ A£®½öÓëa1£¬a3Óйأ¬Óëa2ÎÞ¹Ø B£®½öÓëa1£¬a2Óйأ¬Óëa3ÎÞ¹Ø C£®½öÓëa2£¬a3Óйأ¬Óëa1ÎÞ¹Ø D£®Óëa1£¬a2£¬a3¾ùÎÞ¹Ø 18£®ÒÑÖª25oCʱ£¬NH4Cl¡¢NaOH¡¢NaClµÄÎÞÏÞÏ¡ÊÍĦ¶ûµçµ¼ÂÊ?m·Ö±ðÊÇ1.499¡Á10?2 S¡¤m2¡¤mol?1¡¢2.487¡Á10?2 S¡¤m2¡¤mol?1¡¢1.265¡Á10?2 S¡¤m2¡¤mol?1£¬ÔòÎÞÏÞÏ¡ÊÍĦ¶ûµçµ¼ÂÊH2O)Ϊ£¨£©¡£ ??m(NH3¡¤ A£®0.277¡Á10?2 S¡¤m2¡¤mol?1 B£®2.721¡Á10?2 S¡¤m2¡¤mol?1 C£®2.253¡Á10?2 S¡¤m2¡¤mol?1 D£®1.074¡Á10?2 S¡¤m2¡¤mol?1 19£®±ê×¼Çâµç¼«ÊÇÖ¸£¨£©¡£ A£®Pt | H2(p = 100 kPa) | OH?(a = 1); B£®Pt | H2(p = 100 kPa) | OH?(a = 10?7) ? C£®Pt | H2(p = 100 kPa) | H?(a = 10?7); D£®Pt | H2(p = 100 kPa) | H?(a = 1) 20£®µç½â½ðÊôÑеÄË®ÈÜҺʱ£¬ÆäÏÖÏóΪ£¨ £©¡£ A£®»¹ÔµçÊÆÓúÕýµÄ½ðÊôÀë×ÓÓúÈÝÒ×Îö³ö£» B£®»¹ÔµçÊÆÓú¸ºµÄ½ðÊôÀë×ÓÓúÈÝÒ×Îö³öC£®»¹ÔµçÊÆÓ볬µçÊÆÖ®ºÍÓúÕýµÄ½ðÊôÀë×ÓÓúÈÝÒ×Îö³ö D£®»¹ÔµçÊÆÓ볬µçÊÆÖ®ºÍÓú¸ºµÄ½ðÊôÀë×ÓÓúÈÝÒ×Îö³ö 21.298Kʱ£¬E??Au?Au??1.68V£»E??Au3?Au??1.50V£¬E?Fe3?Fe2??0.77V¡£Ôò·´Ó¦£º2Fe2+ + Au3+ = 2Fe3+ + Au+µÄKΪ£¨ £©¡£ A. 4.33¡Á1021 B.2.29¡Á10-22 C. 6.61¡Á1010 D.7.65¡Á10-23 ¶þ¡¢Ìî¿ÕÌâ 1. ·¢Éú·´Ó¦£º Zn + 2Fe3+ = Zn 2+ + 2Fe2+ µÄÔµç³ØÍ¼Ê½Îª( )¡£2. 0.1mol?kg?1µÄ ???LaCl3µç½âÖÊÈÜÒºµÄÀë×ÓÇ¿¶ÈI= ( )¡£ 3. ˫Һµç³ØÖв»Í¬µç½âÖÊÈÜÒº¼ä»ò²»Í¬Å¨¶ÈµÄͬÖÖµç½âÖÊÈÜÒºµÄ½Ó½ç´¦´æÔÚ( )µçÊÆ£¬Í¨³£²ÉÓÃ¼Ó ( )µÄ·½·¨À´¼õÉÙ»òÏû³ý¡£ 4. µç¼«µÄ¼«»¯Ö÷ÒªÓÐÁ½ÖÖ£¬¼´ ( )¼«»¯Óë( )¼«»¯¡£ 5.CaCl2µÄ¼«ÏÞĦ¶ûµçµ¼ÂÊÓëÆäÀë×ӵļ«ÏÞĦ¶ûµçµ¼ÂʵĹØÏµÊÇ£º ??m(CaCl2)?( ) ¡£ 6.µç³ØÖУ¬Ñô¼«Ò²½Ð( )¼«£¬·¢Éú( )·´Ó¦£»Òõ¼«Ò²½Ð( )¼«£¬·¢Éú( ) ·´Ó¦¡£ 7. µ±·¢Éú¼«»¯ÏÖÏóʱ£¬Ñô¼«µÄµç¼«µçÊÆ½«( )£¬Òõ¼«µÄµç¼«µçÊÆ½«( )¡££¨Ìî±ä´ó¡¢±äС»ò²»±ä£©¡£ 8.ÔÚµç½â³ØÖУ¬Ñô¼«Ò²½Ð ( ) ¼«£¬·¢Éú( )·´Ó¦£»Òõ¼«Ò²½Ð ( )¼«£¬·¢Éú( )·´Ó¦¡£ 9.³ÉΪ¿ÉÄæµç³Ø±ØÐë¾ß±¸µÄÁ½¸öÌõ¼þ( )¡¢( ) ¡£ 10.Àë×ӵį½¾ù»î¶Èa?ÓëÕý¡¢¸ºÀë×ӵĻî¶Èa?,a?µÄ¹ØÏµa?=_____ £»µç½âÖʵĻî¶ÈaBÓëa?µÄ¹ØÏµÊÇaB= ______¡£ 11.ÈôÔµç³ØAg(s)£üAgCl(s)£üHCl(a)£üCl2(g,p)£üPt(s)µÄµç³Ø·´Ó¦Ð´³ÉÒÔÏÂÁ½ÖÖÐÎʽ: Ag(s) + 1/2Cl2(g) = AgCl(s) (1) ¡÷rGm(1) E(1) 2Ag(s) + Cl2(g) = 2AgCl(s) (2) ¡÷rGm(2) E(2) Ôò¡÷rGm(1)Óë¡÷rGm(2)µÄ¹ØÏµÎª( )£»E(1)ÓëE(2)µÄ¹ØÏµÎª£¨ £©¡£ 12.ÈôÏëͨ¹ý²âÁ¿Ôµç³ØµÄ·½·¨À´²âÈ¡AgCl(s)µÄ¡÷fGm¦È,ÔòÐèÉè¼ÆÔµç³Ø£¬¸ÃÔµç³ØµÄÑô¼«Îª£¨ £©£¬Òõ¼«Îª£¨ £©¡£ 13.µç³Ø·´Ó¦ÖУ¬µ±·´Ó¦´ïµ½»¯Ñ§Æ½ºâʱ£¬Æäµç³Øµç¶¯ÊÆÎª£¨ £©(Ìî>0,<0»ò£½0)£¬Èô¼ÆËãµÃijµç³Øµç¶¯ÊÆÎª¸ºÖµÊ±£¬Ôò±íʾ´Ë·´Ó¦Ïò£¨ £©Òƶ¯¡£ 14.NaCl(0.005mol/kg)ÈÜÒºµÄÀë×ÓÆ½¾ù»î¶ÈϵÊý¦Ã¡À£½£¨ £© +£ 15.½«·´Ó¦Ag + Cl ¡ú AgCl(s)Éè¼Æ³Éµç³ØµÄ·ûºÅΪ£¨ £©£¬ ?ÒÑÖª298.15Kʱ£¬µç³ØµÄE?0.576V£¬Ôòµç³Ø·´Ó¦µÄ?rGm£½£¨ £©£¬µç³Ø·´Ó¦´ï ?ƽºâʱ£¬µç³Øµç¶¯ÊÆÎª£¨ £©¡£ Èý¡¢ÅжÏÌâ 1£®298 Kʱ£¬ÏàͬŨ¶È£¨¾ùΪ0.01 mol¡¤kg?1£©µÄKCl£¬CaCl2ºÍLaCl3ÈýÖÖµç½âÖÊË®ÈÜ Òº£¬Àë×ÓÆ½¾ù»î¶ÈÒò×Ó×î´óµÄÊÇLaCl3¡£( ) 2£®Àë×Ó¶ÀÁ¢Ô˶¯¶¨ÂÉÖ»ÊÊÓÃÓÚÎÞÏÞÏ¡±¡µÄÇ¿µç½âÖÊÈÜÒº¡£( ) 3£®µç½â³ØÖÐÑô¼«·¢ÉúÑõ»¯·´Ó¦£¬Òõ¼«·¢Éú»¹Ô·´Ó¦¡£( ) 4£®Ôµç³Øµç¶¯ÊƵ͍ÒåΪ£ºÃ»ÓеçÁ÷ͨ¹ýµÄÌõ¼þÏ£¬Ôµç³ØÁ½¼«µÄ½ðÊôÒýÏßΪͬÖÖ½ðÊôʱ£¬µç³ØÁ½¶ËµÄµçÊÆ²î¡£( ) 5£®0.005 mol¡¤kg?1µÄBaCl2Ë®ÈÜÒº£¬ÆäÀë×ÓÇ¿¶ÈI = 0.03 mol¡¤kg?1¡£( ) 6£®ÔÚÒ»¶¨µÄζȺͽÏСµÄŨ¶ÈÇé¿öÏ£¬Ôö´óÈõµç½âÈÜÒºµÄŨ¶È£¬Ôò¸ÃÈõµç½âÖʵĵ絼ÂÊÔö¼Ó£¬Ä¦¶ûµçµ¼ÂʼõС¡£( ) 7£®Ôµç³ØµÄÕý¼«¼´ÎªÑô¼«£¬¸º¼«¼´ÎªÒõ¼«¡£( ) 8£®E?[H?(a = 1) | H2(p?) | Pt] = 0£¬ÊÇÈ·¶¨±ê×¼µç¼«µçÊÆ¹ú¼Ê¹ßÀýµÄ¹æ¶¨Öµ¡£( ) 9£®Àë×Ó¶ÀÁ¢Ô˶¯¶¨ÂÉ£¬¼È¿ÉÓ¦ÓÃÓÚÎÞÏÞÏ¡Ê͵ÄÇ¿µç½âÖÊÈÜÒº£¬Ò²¿ÉÓ¦ÓÃÓÚÎÞÏÞÏ¡Ê͵ÄÈõµç½âÖÊÈÜÒº¡£( ) 10£®±ê×¼µç¼«µçÊÆµÈÓڵ缫ÓëÖÜΧ»î¶ÈΪ1µÄµç½âÖÊÖ®¼äµÄµçÊÆ²î¡£( ) 11£®Ð¿¡¢ÒøÁ½½ðÊôƬͬʱ²åÈëHClË®ÈÜÒºÖУ¬Ëù¹¹³ÉµÄµç³ØÊÇ¿ÉÄæµç³Ø¡£( ) 12£®µ±·¢Éú¼«»¯ÏÖÏóʱ£¬Ñô¼«µÄµç¼«µçÊÆ½«±ä´ó£¬Òõ¼«µÄµç¼«µçÊÆ½«±äС¡£( ) 13£®CuSO4ÈÜÒºµÄÎÞÏÞÏ¡ÊÍĦ¶ûµçµ¼ÂÊ¿ÉÒÔÓÃ?m¶Ôc×÷ͼÍâÍÆÖÁc?0ÇóµÃ¡£( ) 14£®µç¼«Pt|H2(p=100 kPa)|OH?(a=1)ÊDZê×¼Çâµç¼«£¬ÆäE?(H2+2OH?¡ú2H2O+ 2e) = 0¡£( ) 15£®¶ÔÓÚµç³ØAg(s) | AgNO3(b1) || AgNO3(b2) | Ag(s)£¬b½ÏСµÄÒ»¶ËΪ¸º¼«¡£( ) 16£®HAcÈÜÒºµÄÎÞÏÞÏ¡ÊÍĦ¶ûµçµ¼ÂÊ¿ÉÒÔÓÃ?m¶Ôc×÷ͼÍâÍÆÖÁc?0ÇóµÃ¡£( ) 17£®298 Kʱ£¬µ±H2SO4ÈÜÒºµÄŨ¶È´Ó0.01 mol¡¤kg?1Ôö¼Óµ½0.1 mol¡¤kg?1ʱ£¬Æäµçµ¼ÂʺÍĦ¶ûµçµ¼ÂʾùÔö¼Ó¡£( ) 18£®µç³Ø·´Ó¦µÄµç¶¯ÊÆEMFÓëÖ¸¶¨µç³Ø·´Ó¦¼ÆÁ¿·½³ÌʽµÄÊéдÎ޹أ¬¶øµç³Ø·´Ó¦µÄÈÈÁ¦Ñ§º¯Êý±ä?rGmÔòÓëÖ¸¶¨µç³Ø·´Ó¦¼ÆÁ¿·½³ÌʽµÄÊéдÓйء£( ) 19£®ÓÃͬһ²â¶¨×°Öá¢ÔÚÏàͬʵÑéÌõ¼þÏ£¬²âµÃ0.001 mol¡¤dm?3KClÈÜÒºÖÐCl?µÄÇ¨ÒÆ ÊýΪt(Cl?)£¬¶ø²âµÃ0.001 mol¡¤dm?3NaClÈÜÒºÖÐCl?µÄÇ¨ÒÆÊýΪt'(Cl?)¡£ÒòÁ½ÈÜÒº¾ùΪϡÈÜÒº£¬¿ÉÈÏΪÁ½ÈÜÒºÖÐCl?µÄÇ¨ÒÆËÙÂÊÏàͬ£¬ÄÇô£¬t(Cl?)µÈÓÚt'(Cl?)¡£ ( ) 20£®µç¼«µÄ¼«»¯Ö÷ÒªÓÐÁ½ÖÖ£¬¼´µç»¯Ñ§¼«»¯ÓëŨ²î¼«»¯¡££¨ £© 21£®ÎÞÂÛµç½â³Ø»òÔµç³Ø£¬¼«»¯µÄ½á¹û¶¼½«Ê¹Ñô¼«µÄµç¼«µçÊÆ¼õС£¬Òõ¼«µÄµç¼«µçÊÆÔö´ó¡£( ) 22£®0.005 mol¡¤kg?1µÄBaCl2Ë®ÈÜÒº£¬ÆäÀë×ÓÇ¿¶ÈI = 0.015 mol¡¤kg?1¡££¨ £© 23£®AlCl3Ë®ÈÜÒºµÄÖÊÁ¿Ä¦¶ûŨ¶ÈÈôΪb£¬ÔòÆäÀë×ÓÇ¿¶ÈIµÈÓÚ6b¡££¨ £© 24£®Àë×ÓÇ¨ÒÆÊýt? + t? < 1 ¡££¨ £© 25£®ÑÎÇŵÄ×÷ÓÃÊǵ¼Í¨µçÁ÷ºÍ¼õСҺ½ÓµçÊÆ¡££¨ £© 26£®Àë×ӷյĵçÐÔÓëÖÐÐÄÀë×ÓµçÐÔÏà·´¶øÆäµçÁ¿ÓëÖÐÐÄÀë×ÓµçÁ¿ÏàµÈ¡££¨ £© 27£®µç½âÖÊÈÜÒºµÄÀë×Ó»¥ÎüÀíÂÛÈÏΪ£¬µç½âÖÊÈÜÒºÓëÀíÏëÏ¡ÈÜÒºÈÈÁ¦Ñ§¹æÂɵ᫲îÍêÈ«¹éÒòÓÚÀë×Ó¼äµÄ¿âÂØÁ¦×÷Óᣣ¨ £© 28£®µç¼«µÄ¼«»¯×÷ÓÃʹµÃÔµç³ØµÄ×ö¹¦ÄÜÁ¦Ï½µ¡££¨ £© 29£®µç½âÖÊÈÜÒºÊÇÀë×Óµ¼Ìå¡££¨ £© 30£®±ê×¼µç¼«µçÊÆÎªÕýÖµµÄµç¼«Ö»ÄÜ×÷Õý¼«£¬¶ø±ê×¼µç¼«µçÊÆÎª¸ºÖµµÄµç¼«Ö»ÄÜ×÷¸º¼«¡££¨ £© Ñ¡ÔñÌâ´ð°¸ 1.B;2.A;3.C;4.C;5.C;6.C;7.C;8.D;9.A;10.B;11.A;12.A;13.A;14.B;15.A;16.B;17.A;18.B;19.D;20.C;21.A Ìî¿ÕÌâ´ð°¸: 1. Zn(s) | Zn 2+ (a) || Fe3+[a(Fe3+) ] , Fe2+ [a(Fe2+) ] | Pt(s);2£®0.6mol?kg;3.ÒºÌå½Ó½ç£» ?2???ÑÎÇÅ;4£®Å¨²î£»µç»¯Ñ§;5£®£¨??¡£;6£®£¨¸º£©£»£¨»¹(CaCl)??(Ca)?2?(Cl)£©m2mm?1Ô£©£»£¨Õý£©£»£¨Ñõ»¯£©¡£;7.£¨±ä´ó£©£»£¨±äС£©¡£;8£®£¨Õý¼¶£©£»£¨Ñõ»¯£©£»£¨¸º¼¶£©£»£¨»¹Ô£©£» v?v?9£®£¨µç³Ø×Ü·´Ó¦¿ÉÒÔÏòÕý·´Á½·½Ãæ½øÐУ©£»£¨¹¤×÷ʱµçÁ÷ÎÞÏÞС£©;10. a??aa??1v v;11.2¡÷rGm(1)£½¡÷rGm(2)£»E(1)£½E(2)£»12.(Ag£üAgCl(s)£üCl-),Cl-£üCl2£üaB?a?Pt);13.=0,×ó£»14. 0.926£»15. Ag(s)£üAgCl(s)£üKCl(aq)£ü£üAg+(aq)£üAg(s), ??rGm?55580J?mol?1,E=0v ÅжÏÌâ´ð°¸: 1.¡Á;2.¡Á;3.¡Ì;4.¡Ì;5.¡Á;6.¡Ì;7.¡Á;8.¡Ì;9.¡Ì;10.¡Á;11.¡Á;12.¡Ì;13.¡Ì;14.¡Á;15.¡Ì;16.¡Á;17.¡Á;18.¡Ì;19.¡Á;20¡Ì;21.¡Á;22.¡Ì;23.¡Ì;24.¡Á;25.¡Ì;26.¡Ì;27.¡Ì;28.¡Ì;29.¡Ì;30.¡Á ËÄ¡¢ ¼ÆËãÌâ