//
福建省三明市中考数学试卷
一、选择题(共10题,每题4分,满分40分.每题只有一个正确选项,请在答题卡的相应位置填涂) 1.﹣2的倒数是( ) A.﹣2 B.﹣ C.
D.2
2.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )
A. B. C. D.
3.下列计算正确的是( )
A.a3+a2=2a5 B.a3?a2=a6 C.a3÷a2=a D.(a3)2=a9
4.已知一个正多边形的一个外角为36°,则这个正多边形的边数是( ) A.8
B.9
C.10 D.11
5.对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A.某市明天将有75%的时间下雨 B.某市明天将有75%的地区下雨 C.某市明天一定下雨 D.某市明天下雨的可能性较大
6.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为( )
A.20° B.35° C.45° D.70°
7.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是( )
A.众数是82 B.中位数是82 C.极差是30 D.平均数是82
8.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是( )
//
//
A.2 B.3 C.4 D.5
9.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是( )
A.msin35° B.mcos35° C. D.
10.如图,P,Q分别是双曲线y=在第一、三象限上的点,PA⊥x轴,QB⊥y轴,垂足分别为A,B,点C是PQ与x轴的交点.设△PAB的面积为S1,△QAB的面积为S2,△QAC的面积为S3,则有( )
A.S1=S2≠S3 B.S1=S3≠S2 C.S2=S3≠S1 D.S1=S2=S3
二、填空题(共6题,每题4分,满分24分.请将答案填在答题卡的相应位置) 11.因式分解:2x2﹣18= .
12.若一元二次方程x2+4x+c=0有两个不相等的实数根,则c的值可以是 (写出一个即可). 13.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE= .
14.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是 .
15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是 .
//
//
16.如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是 .
三、解答题(共9题,满分86分.请将解答过程写在答题卡的相应位置) 17.先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=18.解方程:
=1﹣
.
,b=
.
19.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ; (2)请将条形统计图补充完整;
(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
20.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F. (1)求证:四边形ECBF是平行四边形; (2)当∠A=30°时,求证:四边形ECBF是菱形.
//
//
21.如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1. (1)求直线l的表达式;
(2)若反比例函数y=的图象经过点P,求m的值.
22.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元. (1)求y与x的函数关系式;
(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?
23.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由; (2)若AC=6,BC=8,OA=2,求线段DE的长.
24.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.
(1)当抛物线F经过点C时,求它的表达式;
//