18.证明:(1)连接依题意得
BO2,O2O2?,
A? C? O1? O1,O1?,O2,O2?是圆柱底面圆的圆心
D? O2? E?
????∴CD,CD,DE,DE是圆柱底面圆的直径
∵A,B,B分别为C?D?,DE,D?E?的中点 ∴∴
H? G B? ??????A?O1?D???B?O2?D??90
oA C O1 A?O1?∥
BO2?
D B
O2 E
∵BB?//∴∴∴
O2O2?,四边形O2O2?B?B是平行四边形 BO2?
H BO2∥
A?O1?∥BO2
O1?,A?,O2,B四点共面
A?O1到H,使得
(2)延长∵∴
O1?H?AO1?,连接HH?,HO1?,HB
O1?H??A?O1?
O1?H?//O2?B?,四边形O1?O2?B?H?是平行四边形
?O2?O1B? ∴∥H?∵∴
O1?O2??O2O2?,O1?O2??B?O2?,O2O2?IB?O2??O2? O1?O2??面O2O2?B?B
O2O2?B?B,BO2??面O2O2?B?B
∴H?B??面∴
BO2??H?B?
H是正方形,且边长AA??2 易知四边形AA?H?tan?HO1?H??∵
HH??2tan?A?H?G?A?G?1O1?H?A?H?2 ,
∴∴∴
tan?HO1?H??tan?A?H?G?1?HO1?H???A?H?G?90o
HO1??H?G
易知∴∴∴
O1?O2?//HB,四边形O1?O2?BH是平行四边形
BO2?∥HO1?
BO2??H?G,H?GIH?B??H? BO2??平面H?B?G.
19.(本小题满分14分)
2f(x)?lnx?a(1?a)x?2(1?a)x的单调性. a?0设,讨论函数
19.解:函数f(x)的定义域为(0,??)
12a(1?a)x2?2(1?a)x?1f?(x)??2a(1?a)x?2(1?a)?xx
2g(x)?2a(1?a)x?2(1?a)x?1 令
??4(1?a)2?8a(1?a)?12a2?16a?4?4(3a?1)(a?1)
0?a? ① 当
1?a?(3a?1)(a?1)1x?2a(1?a)3时,??0,令f?(x)?0,解得
0?x?则当
1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)x??2a(1?a)2a(1?a)或时,f(x)?0
1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)?x??2a(1?a)2a(1?a)当时,f(x)?0
则f(x)在
(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a),上单调递增,
1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)(,)2a(1?a)2a(1?a)在上单调递减
1?a?1?3② 当时,??0,f(x)?0,则f(x)在(0,??)上单调递增
1?a?(3a?1)(a?1)x??f(x)?02a(1?a)③ 当a?1时,??0,令,解得
x?1?a?(3a?1)(a?1)2a(1?a)
1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0
∵x?0,∴
0?x? 则当
x?当
1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0
(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a)上单调递增,在上单调
则f(x)在递减
20.(本小题满分14分) 设b?0,数列(1)求数列
{an}满足
a1?ban?,
nban?1an?1?n?1(n≥2).
{an}的通项公式;
(2)证明:对于一切正整数n,
2an≤bn?1?1.
an?20.(1)解:∵
nban?1an?1?n?1
anban?1?nan?1?n?1 ∴
n1n?11???aban?1b ∴nnn?1n??1{}aan?1a① 当b?1时,n,则n是以1为首项,1为公差的等差数列 n?1?(n?1)?1?na?1a∴n,即n
n11n?11??(?)a1?bban?11?b
② 当b?0且b?1时,nn11??a1?bb(1?b)
当n?1时,nn111?}a1?b是以b(1?b)为首项,b为公比的等比数列 ∴n{n111???()na1?b1?bb ∴nn111?bn???nna(1?b)b1?b(1?b)b∴n
n(1?b)bnan?1?bn ∴
?n(1?b)bn, b?0且b?1?an??1?bn?1, b?1 ?综上所述
(2)证明:① 当b?1时,
2an?bn?1?1?2;
nn?2n?11?b?(1?b)(1?b?L?b?b) b?0b?1② 当且时,
2n(1?b)bnn?1?b?1n?1n2an?b?1要证,只需证1?b,
2n(1?b)1?b?nbn 即证1?b2n1?b?n?2n?1bn 即证1?b?L?b?b