高考试题——文科数学(广东卷)解析版 下载本文

18.证明:(1)连接依题意得

BO2,O2O2?,

A? C? O1? O1,O1?,O2,O2?是圆柱底面圆的圆心

D? O2? E?

????∴CD,CD,DE,DE是圆柱底面圆的直径

∵A,B,B分别为C?D?,DE,D?E?的中点 ∴∴

H? G B? ??????A?O1?D???B?O2?D??90

oA C O1 A?O1?∥

BO2?

D B

O2 E

∵BB?//∴∴∴

O2O2?,四边形O2O2?B?B是平行四边形 BO2?

H BO2∥

A?O1?∥BO2

O1?,A?,O2,B四点共面

A?O1到H,使得

(2)延长∵∴

O1?H?AO1?,连接HH?,HO1?,HB

O1?H??A?O1?

O1?H?//O2?B?,四边形O1?O2?B?H?是平行四边形

?O2?O1B? ∴∥H?∵∴

O1?O2??O2O2?,O1?O2??B?O2?,O2O2?IB?O2??O2? O1?O2??面O2O2?B?B

O2O2?B?B,BO2??面O2O2?B?B

∴H?B??面∴

BO2??H?B?

H是正方形,且边长AA??2 易知四边形AA?H?tan?HO1?H??∵

HH??2tan?A?H?G?A?G?1O1?H?A?H?2 ,

∴∴∴

tan?HO1?H??tan?A?H?G?1?HO1?H???A?H?G?90o

HO1??H?G

易知∴∴∴

O1?O2?//HB,四边形O1?O2?BH是平行四边形

BO2?∥HO1?

BO2??H?G,H?GIH?B??H? BO2??平面H?B?G.

19.(本小题满分14分)

2f(x)?lnx?a(1?a)x?2(1?a)x的单调性. a?0设,讨论函数

19.解:函数f(x)的定义域为(0,??)

12a(1?a)x2?2(1?a)x?1f?(x)??2a(1?a)x?2(1?a)?xx

2g(x)?2a(1?a)x?2(1?a)x?1 令

??4(1?a)2?8a(1?a)?12a2?16a?4?4(3a?1)(a?1)

0?a? ① 当

1?a?(3a?1)(a?1)1x?2a(1?a)3时,??0,令f?(x)?0,解得

0?x?则当

1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)x??2a(1?a)2a(1?a)或时,f(x)?0

1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)?x??2a(1?a)2a(1?a)当时,f(x)?0

则f(x)在

(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a),上单调递增,

1?a?(3a?1)(a?1)1?a?(3a?1)(a?1)(,)2a(1?a)2a(1?a)在上单调递减

1?a?1?3② 当时,??0,f(x)?0,则f(x)在(0,??)上单调递增

1?a?(3a?1)(a?1)x??f(x)?02a(1?a)③ 当a?1时,??0,令,解得

x?1?a?(3a?1)(a?1)2a(1?a)

1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0

∵x?0,∴

0?x? 则当

x?当

1?a?(3a?1)(a?1)?2a(1?a)时,f(x)?0

(0,1?a?(3a?1)(a?1)1?a?(3a?1)(a?1))(,??)2a(1?a)2a(1?a)上单调递增,在上单调

则f(x)在递减

20.(本小题满分14分) 设b?0,数列(1)求数列

{an}满足

a1?ban?,

nban?1an?1?n?1(n≥2).

{an}的通项公式;

(2)证明:对于一切正整数n,

2an≤bn?1?1.

an?20.(1)解:∵

nban?1an?1?n?1

anban?1?nan?1?n?1 ∴

n1n?11???aban?1b ∴nnn?1n??1{}aan?1a① 当b?1时,n,则n是以1为首项,1为公差的等差数列 n?1?(n?1)?1?na?1a∴n,即n

n11n?11??(?)a1?bban?11?b

② 当b?0且b?1时,nn11??a1?bb(1?b)

当n?1时,nn111?}a1?b是以b(1?b)为首项,b为公比的等比数列 ∴n{n111???()na1?b1?bb ∴nn111?bn???nna(1?b)b1?b(1?b)b∴n

n(1?b)bnan?1?bn ∴

?n(1?b)bn, b?0且b?1?an??1?bn?1,   b?1   ?综上所述

(2)证明:① 当b?1时,

2an?bn?1?1?2;

nn?2n?11?b?(1?b)(1?b?L?b?b) b?0b?1② 当且时,

2n(1?b)bnn?1?b?1n?1n2an?b?1要证,只需证1?b,

2n(1?b)1?b?nbn 即证1?b2n1?b?n?2n?1bn 即证1?b?L?b?b