Êýѧ·ÖÎö13.2Ò»ÖÂÊÕÁ²º¯ÊýÁÐÓ뺯ÊýÏî¼¶ÊýµÄÐÔÖÊ ÏÂÔØ±¾ÎÄ

¶¨Àí13.14£º(ÖðÏîÇóµ¼) Èôº¯ÊýÏî¼¶Êý?un(x)ÔÚÿһÏî¶¼ÓÐÁ¬ÐøµÄµ¼º¯Êý£¬x0¡Ê[a,b]Ϊ?un(x)µÄÊÕÁ²µã£¬ÇÒ?u?n(x)ÔÚ[a,b]ÉÏÒ»ÖÂÊÕÁ²£¬Ôò

?d?du(x)=??un(x)?. ???dxn??dxÖ¤£ºÉè?u?n(x)ÔÚ[a,b]ÉÏÒ»ÖÂÊÕÁ²ÓÚS*(x)£¬¡ßu¡¯n(x)ÔÚ[a,b]ÉÏÁ¬Ðø£¬ Óɶ¨Àí13.12Öª£¬S*(x)ÔÚ[a,b]ÉÏÁ¬Ðø. ÓÖÓɶ¨Àí13.13Öª£¬?x¡Ê[a,b]£¬ ÓÐ?aS*(t)dt=?a?u?n(t)dt=??au?n(t)dt =?un(x)-?un(a)=S(x)-S(a). µÈʽÁ½¶Ë¶ÔxÇ󵼵ãºS¡¯(x)=S*(x)=?u?n(x) £¬µÃÖ¤£¡

Àý3£ºÉèun(x)=

122

ln(1+nx), n=1,2,¡­. Ö¤Ã÷£ºº¯ÊýÏî¼¶Êý?un(x)ÔÚ[0,1]3nxbxÉÏÒ»ÖÂÊÕÁ²£¬²¢ÌÖÂÛÆäºÍº¯ÊýÔÚ[0,1]ÉϵÄÁ¬ÐøÐÔ¡¢¿É»ýÐÔÓë¿É΢ÐÔ. Ö¤£º¶Ôÿ¸ön£¬Ò×¼ûun(x)ÔÚ[0,1]ÉϵÝÔö£¬ÇÒµ±t¡Ý1ʱ£¬ÓÐln(1+t2)

ln(1+n)<¡¤n=, n=1,2,¡­ 332nnn1ÊÕÁ²£¬¡à?un(x)ÔÚ[0,1]ÉÏÒ»ÖÂÊÕÁ². n2ÓÉÿһ¸öun(x)ÔÚ[0,1]ÉÏÁ¬Ðø£¬ÖªÆäºÍº¯ÊýÔÚ[0,1]ÉϵÄÁ¬ÐøÇÒ¿É»ý.

2x2nx12n2xÓÖu¡¯n(x)=3=¡Ü¡Ü, n=1,2,¡­Öª 22222222n(1?nx)nn(1?nx)n(1?nx)?u?(x)ÔÚ[0,1]ÉÏÒ»ÖÂÊÕÁ². ¡àÆäºÍº¯ÊýÔÚ[0,1]ÉÏ¿É΢.

n

Àý4£ºÖ¤Ã÷£ºº¯Êý¦Æ(x)=?1 ÔÚ(1,+¡Þ)ÉÏÓÐÁ¬ÐøµÄ¸÷½×µ¼º¯Êý. xnn?1?k11k1(k)klnnÖ¤£º¼Çun(x)=x, un(x)=(ln)x=(-1)x, k=1,2,¡­.

nnnn¶ÔÈÎÒâ

lnx¡Ê[a,b]?(1,+¡Þ)£¬ÓÐ|un(k)(x)|=

knnxlnkn¡Üa, k=1,2,¡­.

nlnknlnknÓÉlim(a-1)/2=0Öª£¬µ±n³ä·Ö´óʱ£¬ÓÐ(a-1)/2<1£¬´Ó¶ø n??nn1lnknlnkn11?=<, ÓÖÊÕÁ²£¬ ?(a?1)/2(a-1)/2x(a?1)/2(a?1)/2nnnnn)¡à?u(x)ÔÚ[a,b]ÉÏÒ»ÖÂÊÕÁ²£¬´Ó¶ø?u(k)ÔÚ(1,+¡Þ)ÉÏÄÚ±ÕÒ»ÖÂÊÕÁ². n(x(k)nn?1n?1??¡à¦Æ(x)ÔÚ(1,+¡Þ)ÉÏÓÐÁ¬ÐøµÄ¸÷½×µ¼º¯Êý£¬ÇÒ¦Æ(x)=(-1)

ϰÌâ

1¡¢ÌÖÂÛÏÂÁк¯ÊýÁÐÔÚËù¶¨ÒåµÄÇø¼äÉÏ£º

(k)

klnknnx, k=1,2,¡­.

a. {fn}Óë{f¡¯n}µÄÒ»ÖÂÊÕÁ²ÐÔ£»b. {fn}ÊÇ·ñÓж¨Àí13.9~11µÄÌõ¼þÓë½áÂÛ.

xn2x?n(1)fn(x)=, x¡Ê[0,b]£»(2)fn(x)=x-, x¡Ê[0,1]£»

nx?n(3)fn(x)=nxe-nx2, x¡Ê[0,1].

2x?n=1=f(x)£» x?n½â£º(1)¼Çlimfn(x)=nlim??¡Þn??¡Þx?[0,b]sup|fn(x)-f(x)|=supx¡ú0 (n¡ú¡Þ)£¬¡à{fn}ÔÚ[0,b]ÉÏÒ»ÖÂÊÕÁ²ÐÔ£»

x?[0,b]x?nn=g(x)£» 2(x?n)n¡ú0 (n¡ú¡Þ)£¬¡à{f¡¯n}ÔÚ[0,b]ÉÏÒ»ÖÂÊÕÁ²ÐÔ. 2x?[0,b](x?n)¼Çlimf¡¯n(x)=nlim??¡Þn??¡Þx?[0,b]sup|f¡¯n(x)-g(x)|=supÓÖ¡ßfn(x)=

n2x?nºÍf¡¯n(x)=, n=1,2,¡­ ÔÚ[0,b]É϶¼Á¬Ðø£¬ 2(x?n)x?n¡à{fn}Óж¨Àí13.9~11µÄÌõ¼þÓë½áÂÛ.

?xn?(2)¼Çlimfn(x)=nlim?x-n??¡Þn??¡Þ????=x=f(x)£» ?xnsup|fn(x)-f(x)|=sup¡ú0 (n¡ú¡Þ)£¬¡à{fn}ÔÚ[0,1]ÉÏÒ»ÖÂÊÕÁ²ÐÔ£»

x?[0,1]nx?[0,1]?0£¬x? 1 ¼Çg(x)=limf¡¯n(x)=lim(1-x)=?£»

n??¡Þn??¡Þ1£¬0?x?1?n-1

¡ß{f¡¯n(x)}¸÷ÏîÔÚ[0,1]ÉÏÁ¬Ðø£¬¶øg(x)ÔÚ[0,1]²»Á¬Ðø£¬ ¡à{f¡¯n}ÔÚ[0,1]Éϲ»Ò»ÖÂÊÕÁ²ÐÔ.

xnÓÖfn(x)=x-, n=1,2,¡­ ÔÚ[0,1]É϶¼Á¬Ðø£¬

n¡à{fn}Óж¨Àí13.9~10µÄÌõ¼þÓë½áÂÛ£¬µ«²»¾ßÓÐ13.11µÄÌõ¼þ. ÓÖf¡¯(x)=x¡¯=1¡Ùlimf¡¯n(x)£¬¡à{fn}Ò²²»¾ßÓÐ13.11µÄÌõ¼þ.

n??¡Þnxe-nx=0=f(x)£» (3)¼Çlimfn(x)=nlim??¡Þn??¡Þ2x?[0,1]sup|fn(x)-f(x)|=supnxe-nx=n¡¤x?[0,1]21?n(e2n1/2n)2=

n2e1/2¡ú¡Þ (n¡ú¡Þ)£¬

¡à{fn}ÔÚ[0,1]Éϲ»Ò»ÖÂÊÕÁ²ÐÔ£»

2

ne-nx(1-2nx)=?¼Çg(x)=limf¡¯n(x)=nlim??¡Þ2n??¡Þ 0?x?1?0£¬£»

???£¬x?0 ¡ß{f¡¯n(x)}¸÷ÏîÔÚ[0,1]ÉÏÁ¬Ðø£¬¶øg(x)ÔÚ[0,1]²»Á¬Ðø£¬

¡à{f¡¯n}ÔÚ[0,1]Éϲ»Ò»ÖÂÊÕÁ²ÐÔ. ´Ó¶ø{fn}²»¾ßÓж¨Àí13.9~11µÄÌõ¼þ. ¡ßf(x)=0ÔÚ[0,1]ÉÏÁ¬Ðø£¬¡à{fn}Óж¨Àí13.9µÄ½áÂÛ.

-nxnxe¡ßnlimdx=nlim??¡Þ?0??¡Þ1211?111-nx2?12

limfn(x)dx=0. lim?ed(nx)==¡Ù???n?00n??¡Þn??¡Þ22e?22?ÓÖ{f¡¯n(x)}ÔÚx=0²»ÊÕÁ²£»¡à{fn}²»¾ßÓж¨Àí13.10~11µÄ½áÂÛ.

2¡¢Ö¤Ã÷£ºÈôº¯ÊýÁÐ{fn}ÔÚ[a,b]ÉÏÂú×㶨Àí13.11µÄÌõ¼þ£¬Ôò{fn}ÔÚ[a,b]

ÉÏÒ»ÖÂÊÕÁ².

Ö¤£ºÉèf¡¯n(x)?g(x) (n¡ú¡Þ), x¡Ê[a,b]£¬Ôò?¦Å>0£¬?N1>0£¬µ±n>N1ʱ£¬ ¶ÔÒ»ÇÐt¡Ê[a,b]£¬ÓÐ|f¡¯n(t)-g(t)|<

¦Å£» 2(b?a)ÓÖfn(x)µãx0ÊÕÁ²£¬¡à¶ÔÉÏÊöµÄ¦Å>0£¬?N2>0£¬µ±n>N2ʱ£¬ÓÐ|fn(x0)-f(x0)|<. ¡ß¶ÔÈÎÒâx,x0¡Ê[a,b]ÓÐfn(x)=fn(x0)+?xfn?(t)dt£¬

0¦Å2x¡àf(x)=limfn(x)=f(x0)+?xg(t)dt. È¡N=max{N1,N2}£¬Ôòµ±n>Nʱ£¬ÓÐ

n??0x?(t)-g(t)?dt | ¡à|fn(x)-f(x)|=|fn(x0)-f(x0)+?x?fn0x?(t)-g(t)dt |<¦Å. µÃÖ¤. ¡Ü|fn(x0)-f(x0)|+|?xfn0x

xxn-13¡¢ÉèS(x)=?2, x¡Ê[-1,1]£¬¼ÆËã»ý·Ö?0S(t)dt.

n?1n??xn-1xn-11½â£º¡ß2¡Ü2, x¡Ê[-1,1]£¬ÓÉMÅбð·¨Öª?2ÔÚ[-1,1]ÉÏÒ»ÖÂÊÕÁ².

nnn?1nn-1??xxtxn-1xnÓÖ2(n=1,2,¡­)ÔÚ[-1,1]ÉÏÁ¬Ðø£¬¡à?0S(t)dt=??02dt=?3. nnn?1n?1n

4¡¢S(x)=?n?1?cosnxnn, x¡ÊR£¬¼ÆËã»ý·Ö?0S(t)dt.

1nnx½â£º¡ßÓÖ

cosnxnncosnxnn¡Ü

, x¡ÊR£¬ÓÉMÅбð·¨Öª?n?1?cosnxnnxÔÚRÉÏÒ»ÖÂÊÕÁ².

dt=?n?1?(n=1,2,¡­)ÔÚRÉÏÁ¬Ðø£¬¡à?0S(t)dt=??0n?1x?cosntnnsinnxn2n.

5¡¢S(x)=?ne-nx, x>0£¬¼ÆËã»ý·Ö?ln2S(t)dt.

n?1?ln3