¶¨Àí13.14£º(ÖðÏîÇóµ¼) Èôº¯ÊýÏî¼¶Êý?un(x)ÔÚÿһÏî¶¼ÓÐÁ¬ÐøµÄµ¼º¯Êý£¬x0¡Ê[a,b]Ϊ?un(x)µÄÊÕÁ²µã£¬ÇÒ?u?n(x)ÔÚ[a,b]ÉÏÒ»ÖÂÊÕÁ²£¬Ôò
?d?du(x)=??un(x)?. ???dxn??dxÖ¤£ºÉè?u?n(x)ÔÚ[a,b]ÉÏÒ»ÖÂÊÕÁ²ÓÚS*(x)£¬¡ßu¡¯n(x)ÔÚ[a,b]ÉÏÁ¬Ðø£¬ Óɶ¨Àí13.12Öª£¬S*(x)ÔÚ[a,b]ÉÏÁ¬Ðø. ÓÖÓɶ¨Àí13.13Öª£¬?x¡Ê[a,b]£¬ ÓÐ?aS*(t)dt=?a?u?n(t)dt=??au?n(t)dt =?un(x)-?un(a)=S(x)-S(a). µÈʽÁ½¶Ë¶ÔxÇ󵼵ãºS¡¯(x)=S*(x)=?u?n(x) £¬µÃÖ¤£¡
Àý3£ºÉèun(x)=
122
ln(1+nx), n=1,2,¡. Ö¤Ã÷£ºº¯ÊýÏî¼¶Êý?un(x)ÔÚ[0,1]3nxbxÉÏÒ»ÖÂÊÕÁ²£¬²¢ÌÖÂÛÆäºÍº¯ÊýÔÚ[0,1]ÉϵÄÁ¬ÐøÐÔ¡¢¿É»ýÐÔÓë¿É΢ÐÔ. Ö¤£º¶Ôÿ¸ön£¬Ò×¼ûun(x)ÔÚ[0,1]ÉϵÝÔö£¬ÇÒµ±t¡Ý1ʱ£¬ÓÐln(1+t2) ln(1+n)<¡¤n=, n=1,2,¡ 332nnn1ÊÕÁ²£¬¡à?un(x)ÔÚ[0,1]ÉÏÒ»ÖÂÊÕÁ². n2ÓÉÿһ¸öun(x)ÔÚ[0,1]ÉÏÁ¬Ðø£¬ÖªÆäºÍº¯ÊýÔÚ[0,1]ÉϵÄÁ¬ÐøÇÒ¿É»ý. 2x2nx12n2xÓÖu¡¯n(x)=3=¡Ü¡Ü, n=1,2,¡Öª 22222222n(1?nx)nn(1?nx)n(1?nx)?u?(x)ÔÚ[0,1]ÉÏÒ»ÖÂÊÕÁ². ¡àÆäºÍº¯ÊýÔÚ[0,1]ÉÏ¿É΢. n Àý4£ºÖ¤Ã÷£ºº¯Êý¦Æ(x)=?1 ÔÚ(1,+¡Þ)ÉÏÓÐÁ¬ÐøµÄ¸÷½×µ¼º¯Êý. xnn?1?k11k1(k)klnnÖ¤£º¼Çun(x)=x, un(x)=(ln)x=(-1)x, k=1,2,¡. nnnn¶ÔÈÎÒâ lnx¡Ê[a,b]?(1,+¡Þ)£¬ÓÐ|un(k)(x)|= knnxlnkn¡Üa, k=1,2,¡. nlnknlnknÓÉlim(a-1)/2=0Öª£¬µ±n³ä·Ö´óʱ£¬ÓÐ(a-1)/2<1£¬´Ó¶ø n??nn1lnknlnkn11?=<, ÓÖÊÕÁ²£¬ ?(a?1)/2(a-1)/2x(a?1)/2(a?1)/2nnnnn)¡à?u(x)ÔÚ[a,b]ÉÏÒ»ÖÂÊÕÁ²£¬´Ó¶ø?u(k)ÔÚ(1,+¡Þ)ÉÏÄÚ±ÕÒ»ÖÂÊÕÁ². n(x(k)nn?1n?1??¡à¦Æ(x)ÔÚ(1,+¡Þ)ÉÏÓÐÁ¬ÐøµÄ¸÷½×µ¼º¯Êý£¬ÇÒ¦Æ(x)=(-1) ϰÌâ 1¡¢ÌÖÂÛÏÂÁк¯ÊýÁÐÔÚËù¶¨ÒåµÄÇø¼äÉÏ£º (k) klnknnx, k=1,2,¡. a. {fn}Óë{f¡¯n}µÄÒ»ÖÂÊÕÁ²ÐÔ£»b. {fn}ÊÇ·ñÓж¨Àí13.9~11µÄÌõ¼þÓë½áÂÛ. xn2x?n(1)fn(x)=, x¡Ê[0,b]£»(2)fn(x)=x-, x¡Ê[0,1]£» nx?n(3)fn(x)=nxe-nx2, x¡Ê[0,1]. 2x?n=1=f(x)£» x?n½â£º(1)¼Çlimfn(x)=nlim??¡Þn??¡Þx?[0,b]sup|fn(x)-f(x)|=supx¡ú0 (n¡ú¡Þ)£¬¡à{fn}ÔÚ[0,b]ÉÏÒ»ÖÂÊÕÁ²ÐÔ£» x?[0,b]x?nn=g(x)£» 2(x?n)n¡ú0 (n¡ú¡Þ)£¬¡à{f¡¯n}ÔÚ[0,b]ÉÏÒ»ÖÂÊÕÁ²ÐÔ. 2x?[0,b](x?n)¼Çlimf¡¯n(x)=nlim??¡Þn??¡Þx?[0,b]sup|f¡¯n(x)-g(x)|=supÓÖ¡ßfn(x)= n2x?nºÍf¡¯n(x)=, n=1,2,¡ ÔÚ[0,b]É϶¼Á¬Ðø£¬ 2(x?n)x?n¡à{fn}Óж¨Àí13.9~11µÄÌõ¼þÓë½áÂÛ. ?xn?(2)¼Çlimfn(x)=nlim?x-n??¡Þn??¡Þ????=x=f(x)£» ?xnsup|fn(x)-f(x)|=sup¡ú0 (n¡ú¡Þ)£¬¡à{fn}ÔÚ[0,1]ÉÏÒ»ÖÂÊÕÁ²ÐÔ£» x?[0,1]nx?[0,1]?0£¬x? 1 ¼Çg(x)=limf¡¯n(x)=lim(1-x)=?£» n??¡Þn??¡Þ1£¬0?x?1?n-1 ¡ß{f¡¯n(x)}¸÷ÏîÔÚ[0,1]ÉÏÁ¬Ðø£¬¶øg(x)ÔÚ[0,1]²»Á¬Ðø£¬ ¡à{f¡¯n}ÔÚ[0,1]Éϲ»Ò»ÖÂÊÕÁ²ÐÔ. xnÓÖfn(x)=x-, n=1,2,¡ ÔÚ[0,1]É϶¼Á¬Ðø£¬ n¡à{fn}Óж¨Àí13.9~10µÄÌõ¼þÓë½áÂÛ£¬µ«²»¾ßÓÐ13.11µÄÌõ¼þ. ÓÖf¡¯(x)=x¡¯=1¡Ùlimf¡¯n(x)£¬¡à{fn}Ò²²»¾ßÓÐ13.11µÄÌõ¼þ. n??¡Þnxe-nx=0=f(x)£» (3)¼Çlimfn(x)=nlim??¡Þn??¡Þ2x?[0,1]sup|fn(x)-f(x)|=supnxe-nx=n¡¤x?[0,1]21?n(e2n1/2n)2= n2e1/2¡ú¡Þ (n¡ú¡Þ)£¬ ¡à{fn}ÔÚ[0,1]Éϲ»Ò»ÖÂÊÕÁ²ÐÔ£» 2 ne-nx(1-2nx)=?¼Çg(x)=limf¡¯n(x)=nlim??¡Þ2n??¡Þ 0?x?1?0£¬£» ???£¬x?0 ¡ß{f¡¯n(x)}¸÷ÏîÔÚ[0,1]ÉÏÁ¬Ðø£¬¶øg(x)ÔÚ[0,1]²»Á¬Ðø£¬ ¡à{f¡¯n}ÔÚ[0,1]Éϲ»Ò»ÖÂÊÕÁ²ÐÔ. ´Ó¶ø{fn}²»¾ßÓж¨Àí13.9~11µÄÌõ¼þ. ¡ßf(x)=0ÔÚ[0,1]ÉÏÁ¬Ðø£¬¡à{fn}Óж¨Àí13.9µÄ½áÂÛ. -nxnxe¡ßnlimdx=nlim??¡Þ?0??¡Þ1211?111-nx2?12 limfn(x)dx=0. lim?ed(nx)==¡Ù???n?00n??¡Þn??¡Þ22e?22?ÓÖ{f¡¯n(x)}ÔÚx=0²»ÊÕÁ²£»¡à{fn}²»¾ßÓж¨Àí13.10~11µÄ½áÂÛ. 2¡¢Ö¤Ã÷£ºÈôº¯ÊýÁÐ{fn}ÔÚ[a,b]ÉÏÂú×㶨Àí13.11µÄÌõ¼þ£¬Ôò{fn}ÔÚ[a,b] ÉÏÒ»ÖÂÊÕÁ². Ö¤£ºÉèf¡¯n(x)?g(x) (n¡ú¡Þ), x¡Ê[a,b]£¬Ôò?¦Å>0£¬?N1>0£¬µ±n>N1ʱ£¬ ¶ÔÒ»ÇÐt¡Ê[a,b]£¬ÓÐ|f¡¯n(t)-g(t)|< ¦Å£» 2(b?a)ÓÖfn(x)µãx0ÊÕÁ²£¬¡à¶ÔÉÏÊöµÄ¦Å>0£¬?N2>0£¬µ±n>N2ʱ£¬ÓÐ|fn(x0)-f(x0)|<. ¡ß¶ÔÈÎÒâx,x0¡Ê[a,b]ÓÐfn(x)=fn(x0)+?xfn?(t)dt£¬ 0¦Å2x¡àf(x)=limfn(x)=f(x0)+?xg(t)dt. È¡N=max{N1,N2}£¬Ôòµ±n>Nʱ£¬ÓÐ n??0x?(t)-g(t)?dt | ¡à|fn(x)-f(x)|=|fn(x0)-f(x0)+?x?fn0x?(t)-g(t)dt |<¦Å. µÃÖ¤. ¡Ü|fn(x0)-f(x0)|+|?xfn0x xxn-13¡¢ÉèS(x)=?2, x¡Ê[-1,1]£¬¼ÆËã»ý·Ö?0S(t)dt. n?1n??xn-1xn-11½â£º¡ß2¡Ü2, x¡Ê[-1,1]£¬ÓÉMÅбð·¨Öª?2ÔÚ[-1,1]ÉÏÒ»ÖÂÊÕÁ². nnn?1nn-1??xxtxn-1xnÓÖ2(n=1,2,¡)ÔÚ[-1,1]ÉÏÁ¬Ðø£¬¡à?0S(t)dt=??02dt=?3. nnn?1n?1n 4¡¢S(x)=?n?1?cosnxnn, x¡ÊR£¬¼ÆËã»ý·Ö?0S(t)dt. 1nnx½â£º¡ßÓÖ cosnxnncosnxnn¡Ü , x¡ÊR£¬ÓÉMÅбð·¨Öª?n?1?cosnxnnxÔÚRÉÏÒ»ÖÂÊÕÁ². dt=?n?1?(n=1,2,¡)ÔÚRÉÏÁ¬Ðø£¬¡à?0S(t)dt=??0n?1x?cosntnnsinnxn2n. 5¡¢S(x)=?ne-nx, x>0£¬¼ÆËã»ý·Ö?ln2S(t)dt. n?1?ln3