北师大版初中数学知识点汇总(最全)doc 下载本文

对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比。

八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质。2、相似三角形的性质及判定。相似多边形的性质。

第五章 数据的收集与处理

(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查. (2)总体:其中所要考察对象的全体称为总体。 (3)个体:组成总体的每个考察对象称为个体 (4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查. (5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本。

(6) 当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小. (7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。 数据波动的统计量:极差:指一组数据中最大数据与最小数据的差。方差:是各个数据与平均数之差的平方的平均数。标准差:方差的算术平方根。识记其计算公式。一组数据的极差,方差或标准差越小,这组数据就越稳定。还要知平均数,众数,中位数的定义。

刻画平均水平用:平均数,众数,中位数。 刻画离散程度用:极差,方差,标准差。

常考知识点:1、作频数分布表,作频数分布直方图。2、利用方差比较数据的稳定性。3、平均数,中位数,众数,极差,方差,标准差的求法。3、频率,样本的定义

第六章 证明

一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果??,那么??”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

二、三角形内角和定理:三角形三个内角的和等于180度。

1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角。 2、三角形的外角与它相邻的内角是互为补角. 三、三角形的外角与它不相邻的内角关系是:

(1)三角形的一个外角等于和它不相邻的两个内角的和. (2)三角形的一个外角大于任何一个和它不相邻的内角. 四、证明一个命题是真命题的基本步骤是: (1)根据题意,画出图形.

(2)根据条件、结论,结合图形,写出已知、求证.

(3)经过分析,找出由已知推出求证的途径,写出证明过程. 在证明时需注意:

(1)在一般情况下,分析的过程不要求写出来.

(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。30。所对的直角边是斜边的一半。斜边上的高是斜边的一半。 常考知识点:

1、三角形的内角和定理,及三角形外角定理。

2、两直线平行的性质及判定。命题及其条件和结论,真假命题的定义。

北师大版初中数学定理知识点汇总[九年级(上册)

第一章 证明(二)

※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。

※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的 直角三角形,其中一个锐角等于30o,这它所对的直角边必然等于斜边的一半。 ※有一个角等于60o的等腰三角形是等边三角形。

※如果知道一个三角形为直角三角形首先要想的定理有:

①勾股定理:(注意区分斜边与直角边)

②在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半 ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线是垂直于一条线段并且平分这条线段的直线。(注意着重号的意义) .........<直线与射线有垂线,但无垂直平分线>

※线段垂直平分线上的点到这一条线段两个端点距离相等。

※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。(如图1所示,AO=BO=CO) ※角平分线上的点到角两边的距离相等。

※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。 角平分线是到角的两边距离相等的所有点的集合。

※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。 (如图2所示,OD=OE=OF)

第二章 一元二次方程 ※只含有一个未知数的整式方程,且都可以化为常数,a≠0)的形式,这样的方程叫一元二次方程。 ......※把

c为常数项。

※解一元二次方程的方法:①配方法 <即将其变为

的形式>

(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;

(a、b、c为

②公式法 (注意在找abc时须先把方程化为一般形式)

③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;

②将二次项系数化成1;

③把常数项移到方程的右边;

④两边加上一次项系数的一半的平方;

⑤把方程转化成

⑥两边开方求其根。

2

※根与系数的关系:当b-4ac>0时,方程有两个不等的实数根;

2

当b-4ac=0时,方程有两个相等的实数根;

2

当b-4ac<0时,方程无实数根。

的形式;

※如果一元二次方程的两根分别为x1、x2,则有:。

※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;

(2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式:

①④⑥

② ⑤

⑦其他能用

表达的代数式。

的根

(3)已知方程的两根x1、x2,可以构造一元二次方程:

(4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程

※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

※处理问题的过程可以进一步概括为:

第三章 证明(三)

※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对......

角线。 ..

※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。

※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平

行线之间的距离。

菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

菱形是轴对称图形,每条对角线所在的直线都是对称轴。

※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。

※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ..

※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。

※推论:直角三角形斜边上的中线等于斜边的一半。 正方形的定义:一组邻边相等的矩形叫做正方形。

※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

※正方形常用的判定:有一个内角是直角的菱形是正方形;

邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。

正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

※两条腰相等的梯形叫做等腰梯形。

※一条腰和底垂直的梯形叫做直角梯形。

※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形。

※三角形的中位线平行于第三边,并且等于第三边的一半。 ※夹在两条平行线间的平行线段相等。

※在直角三角形中,斜边上的中线等于斜边的一半

第四章 视图与投影

※三视图包括:主视图、俯视图和左视图。

三视图之间要保持长对正,高平齐,宽相等。一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。 主视图:基本可认为从物体正面视得的图象 俯视图:基本可认为从物体上面视得的图象 左视图:基本可认为从物体左面视得的图象

※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。 ※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。 ※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。 ..太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。 ....

探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。 ....※区分平行投影和中心投影:①观察光源;②观察影子。 眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。 ......※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。 ①点在一个平面上的投影仍是一个点; ②线段在一个面上的投影可分为三种情况: 线段垂直于投影面时,投影为一点;

线段平行于投影面时,投影长度等于线段的实际长度; 线段倾斜于投影面时,投影长度小于线段的实际长度。 ③平面图形在某一平面上的投影可分为三种情况:

平面图形和投影面平行的情况下,其投影为实际形状; 平面图形和投影面垂直的情况下,其投影为一线段;

平面图形和投影面倾斜的情况下,其投影小于实际的形状。

第五章 反比例函数