µÚ1Õ Êý¾Ý½á¹¹
Ò»¡¢Ñ¡ÔñÌâ
1.Ëã·¨Ö¸µÄÊÇ£¨£©¡£
A¼ÆËã»ú³ÌÐò B½â¾öÎÊÌâµÄ¼ÆËã·½·¨
CÅÅÐò·½·¨ D½â¾öÎÊÌâµÄÓÐÏÞÔËËãÐòÁÐ
2.ÔÚÊý¾ÝµÄÊ÷ÐνṹÖУ¬Êý¾ÝÔªËØÖ®¼äΪ£¨ £©µÄ¹ØÏµ¡£ A 0:0 B 1:1 C 1:n D m:n
3.Êý¾ÝµÄ´æ´¢½á¹¹°üÀ¨Ë³Ðò¡¢Á´½Ó¡¢É¢Áкͣ¨ £©4ÖÖ»ù±¾ÀàÐÍ¡£ AË÷Òý BÊý×é C¼¯ºÏ DÏòÁ¿ 4.Ò»¸öÊý×éÔªËØa[i]Ó루 £©µÄ±íʾµÈ¼Û¡£
A &a+i B *(a+i) C *a+i D a+i
5.ÈôÖ»ÐèÒªÀûÓÃÐβμä½Ó·ÃÎÊʵ²ÎÖ¸ÕëËùÖ¸ÏòµÄ¶ÔÏ󣬶øÐβα¾Éí¾ßÓÐÏàÓ¦µÄ´æ´¢¿Õ¼ä£¬ÔòÓ¦°ÑÐβαäÁ¿ËµÃ÷Ϊ£¨ £©²ÎÊý¡£ AÖ¸Õë BÒýÓà CÖµ DÖ¸ÕëÒýÓÃ
6.ÈôÖ»ÐèÒªÀûÓÃÐβÎʵÏÖ¶Ôʵ²ÎÖµµÄ¿½±´£¬º¯ÊýÌå²Ù×÷ÐβÎʱÓëʵ²ÎÎ޹أ¬ÔòÓ¦°ÑÐβαäÁ¿ËµÃ÷Ϊ£¨ £©²ÎÊý¡£
AÖ¸Õë BÒýÓà CÖµ DÖ¸ÕëÒýÓà 7.ÏÂÃæ³ÌÐòµÄʱ¼ä¸´ÔÓÐÔµÄÁ¿¼¶Îª£¨£©¡£ int i=0£¬s1=£¬s2=0£» while£¨i++ else s2+=i; } A.O(1) B.O(1bn) C.O£¨n£© D.O(2n) 8.ÏÂÃæ³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨ £©¡£ for(int i=0;i a[i][j]=i*j; A.O(m2) B.O(n2) C.O(m+n) D.O(m*n) 9.Ö´ÐÐÏÂÃæ³ÌÐò¶Îʱ£¬SÓï¾äµÄÖ´ÐдÎÊýΪ£¨£©¡£ for(int i=1;i<=n;i++) for(int j=1,j<=i;j++) S; A.n(n-1)/2 B.n(n+1)/2 C.n2/2 D.n 10.ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò´æ´¢½á¹¹µÄÏßÐÔ±íÖУ¬ÏòµÚi¸öÔªËØ£¨1¡Üi¡Ün+1£©Î»ÖòåÈëÒ»¸öÔªËØÊ±£¬ÐèÒª´ÓºóÏòǰÒÀ´ÎºóÒÆ£¨£©¸öÔªËØ¡£ A.n-i B.n-i+l C.n-i-l D.i 11. ÔÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò´æ´¢½á¹¹µÄÏßÐÔ±íÖУ¬É¾³ýµÚi¸öÔªËØ£¨1¡Üi¡Ün+1£©Ê±£¬ÐèÒª´ÓǰÏòºóÒÀ´ÎºóÒÆ£¨£©¸öÔªËØ¡£ A.n-i B.n-i+l C.n-i-l D.i 12.ÔÚÒ»¸ö³¤¶ÈΪnµÄÏßÐÔ±íÖУ¬É¾³ýֵΪxµÄÔªËØÊ±ÐèÒª±È½ÏÔªËØºÍÒÆ¶¯ÔªËصÄ×Ü´ÎÊýΪ£¨£©¡£ A.(n+1)/2 B.n/2 C.n D.n+1 13.ÔÚÒ»¸ö˳Ðò±íµÄ±íβ²åÈëÒ»¸öÔªËØµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A. O(n) B. O(1) C. O(n*n) D. O(lbn) 14.ÔÚÒ»¸ö˳Ðò±íÖеÄÈκÎλÖòåÈëÒ»¸öÔªËØµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A. O(n) B. O(n/2) C. O(1) D. O(n2) 15.ÔÚÒ»¸öµ¥Á´±íÖÐɾ³ýpËùÖ¸Ïò½áµãµÄºó¼Ì½áµãʱ£¬ÆäËã·¨µÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A. O(n) B. O(n/2) C. O(1) D. O(n2) 16.ÏßÐÔ±íµÄÁ´Ê½´æ´¢±È˳Ðò´æ´¢¸üÓÐÀûÓÚ½øÐУ¨£©²Ù×÷¡£ A.²éÕÒ B.±íβ²åÈëºÍɾ³ý C.°´Öµ²åÈëºÍɾ³ý D.±íÍ·µÄ²åÈëºÍɾ³ý 17.ÏßÐÔ±íµÄ˳Ðò´æ´¢±ÈÁ´Ê½´æ´¢¸üÓÐÀûÓÚ½øÐУ¨£©²Ù×÷¡£ A.²éÕÒ B.±íβ²åÈëºÍɾ³ý C.°´Öµ²åÈëºÍɾ³ý D.±íÍ·µÄ²åÈëºÍɾ³ý 18.ÔÚÒ»¸öµ¥Á´±íÖУ¬ÈôÒªÔÚPËùÖ¸ÏòµÄ½áµãÖ®ºó²åÈëÒ»¸öнáµã£¬ÔòÐèÒªÏà¼ÌÐ޸썣©¸öÖ¸ÕëÓòµÄÖµ. A.1 B.2 C.3 D.4 19.ÔÚÒ»¸ö´øÍ·½áµãµÄÑ»·Ë«ÏòÁ´±íÖУ¬ÈôÒªÔÚPËùÖ¸ÏòµÄ½áµã֮ǰ²åÈëÒ»¸öнáµã£¬ÔòÐèÒªÏà¼ÌÐ޸썣©¸öÖ¸ÕëÓòµÄÖµ¡£ A.2 B.3 C.4 D.6 20.ÔÚÒ»¸ö±íÍ·Ö¸ÕëΪphµÄµ¥Á´±íÖУ¬ÈôÒªÏò±íÍ·²åÈëÒ»¸öÓÉÖ¸ÕëpÖ¸ÏòµÄ½áµã£¬ÔòÓ¦Ö´ÐУ¨£©²Ù×÷¡£ A. ph=p; p->next=ph; B. p->next=ph; ph=p; C. p->next=ph; p=ph; D. p->next=ph->next; ph->next=p; 21.ÔÚÒ»¸ö±íÍ·Ö¸ÕëΪphµÄµ¥Á´±íÖУ¬ÈôÒªÔÚÖ¸ÕëqËùÖ¸½áµãµÄºóÃæ²åÈëÒ»¸öÓÉÖ¸ÕëpËùÖ¸ÏòµÄ½áµã£¬ÔòÖ´ÐУ¨£©²Ù×÷¡£ A. q->next=p->next; p->next=q; B. p->next=q->next; q=p; C. q->next=p->next; p->next=q; D. p->next=q->next; q->next=p; 22.ÔÚÒ»¸öµ¥Á´±íHLÖУ¬ÈôҪɾ³ýÓÉÖ¸ÕëqËùÖ¸Ïò½áµãµÄºó¼Ì½áµã£¨Èô´æÔڵϰ£©£¬ÔòÖ´ÐУ¨£©²Ù×÷¡£ A. p=q->next; p->next=q->next; B. p=q->next; q->next=p; C. p=q->next; q->next=p->next; D. q->next=q->next->next; q->next=q; 23.ÔÚÒ»¸ö´øÍ·½áµãµÄÑ»·Ë«ÏòÁ´±íÖУ¬ÈôÒªÔÚÖ¸ÕëpËùÖ¸ÏòµÄ½áµãÖ®ºó²åÈëÒ»¸öqÖ¸ÕëËùÖ¸ÏòµÄ½áµã£¬ÔòÐèÒª¶Ôq->next¸³ÖµÎª£¨£©¡£ A. P->prior B. p->next C. p->next->next D.p->prior->prior 24.ÔÚÒ»¸ö´øÍ·½áµãµÄÑ»·Ë«ÏòÁ´±íÖУ¬ÈôÒªÔÚÖ¸ÕëpËùÖ¸ÏòµÄ½áµã֮ǰ²åÈëÒ»¸öqÖ¸ÕëËùÖ¸ÏòµÄ½áµã£¬ÔòÐèÒª¶Ôp->prior->next¸³ÖµÎª£¨£©¡£ A. q B. p C. p->next D. p->prior 25. ÔÚÒ»¸ö´øÍ·½áµãµÄÑ»·Ë«ÏòÁ´±íÖУ¬ÈôҪɾ³ýÖ¸ÕëpËùÖ¸ÏòµÄ½áµãÔòÖ´ÐУ¨£©²Ù×÷¡£ A. p->prior->next=p->next; p->next->prior=p->prior; B. p->next->prior=p; p->next=p->next->next; C. p->prior->next=p; p->next=p->next->prior; D. p=p->next; p->prior->next=p->prior; 26.Õ»µÄ²åÈëºÍɾ³ý²Ù×÷ÔÚ£¨£©½øÐС£ A. Õ»¶¥ B. Õ»µ×C. ÈÎÒâλÖÃD. Ö¸¶¨Î»Öà 27.µ±ÀûÓôóСΪNµÄÊý×é˳Ðò´æ´¢Ò»¸öջʱ£¬¼Ù¶¨ÓÃtop==N±íʾջ¿Õ£¬ÔòÏòÕâ¸öÕ»²åÈë Ò»¸öÔªËØÊ±£¬Ê×ÏÈÓ¦Ö´ÐУ¨£©Óï¾äÐÞ¸ÄtopÖ¸Õë¡£ A.top++ B.top-- C.top=0 D.top=N-1 28.¼Ù¶¨ÀûÓÃÊý×éa[N]˳Ðò´æ´¢Ò»¸öÕ»£¬ÓÃtop±íʾջ¶¥Ö¸Õ룬ÓÃtop=N+1±íʾջ¿Õ£¬¸ÃÊý×éËù´æ´¢µÄÕ»µÄ×î´ó³¤¶ÈΪN£¬Ôò±íʾջÂúµÄÌõ¼þΪ£¨£©¡£ A.top==1 B.top==-1 C.top=0 D.top=N-1 29. ¼Ù¶¨ÀûÓÃÊý×éa[N]˳Ðò´æ´¢Ò»¸öÕ»£¬ÓÃtop±íʾջ¶¥Ö¸Õ룬ÓÃtop==-1±íʾջ¿Õ£¬²¢ÒÑ֪ջδÂú£¬µ±ÔªËØx½øÕ»Ê±ËùÖ´ÐеIJÙ×÷Ϊ£¨£©¡£ A.a[--top]=x B.a[top--]=x C.a[++top]=x D.a[top++]=x 30. ¼Ù¶¨ÀûÓÃÊý×éa[N]˳Ðò´æ´¢Ò»¸öÕ»£¬ÓÃtop±íʾջ¶¥Ö¸Õ룬ÓÃtop==-1±íʾջ¿Õ£¬²¢ÒÑ֪ջδ¿Õ£¬µ±ÍËÕ»²¢·µ»ØÕ»¶¥ÔªËØÊ±ËùÖ´ÐеIJÙ×÷Ϊ£¨£©¡£ A return a[--top] B return a[top--] C return a[++top] D return a[top++] 31.¼Ù¶¨Ò»¸öÁ´Ê½Õ»µÄÕ»¶¥Ö¸ÕëÓÃtop±íʾ£¬¸ÃÁ´Ê½Õ»Îª¿ÕµÄÌõ¼þ£¨£©¡£ A.top£¡=NULL; B. top==top->next; C. top== NULL; D. top£¡= top->next; 32.¼Ù¶¨Ò»¸öÁ´Ê½Õ»µÄÕ»¶¥Ö¸ÕëÓÃtop±íʾ£¬Ã¿¸ö½áµã½á¹¹Îª,µ±pËùÖ¸ÏòµÄ½áµã½øÕ»Ê±£¬Ö´ÐеIJÙ×÷Ϊ£¨£©¡£ A. p->next=top; top=top->next; B. top=p; p->next=top; C. p->next=top->next; top->next=p; D. p->next=top; top=p; 33.¼Ù¶¨Ò»¸öÁ´Ê½Õ»µÄÕ»¶¥Ö¸ÕëÓÃtop±íʾ£¬Ã¿¸ö½áµã½á¹¹Îª,ÍËջʱËùÖ´ÐеIJÙ×÷Ϊ£¨£©¡£ A.top->next=top£»B.top=top->data; C.top=top->next; D. top->next=top->next->next; 34.ÈôÈÃÔªËØ1£¬2£¬3£¬4ÒÀ´Î½øÕ»£¬Ôò³öÕ»´ÎÐò²»¿ÉÄܳöÏÖ£¨ £©µÄÇé¿ö¡£ A.3£¬2£¬1£¬4 B.2£¬1£¬4£¬3 C.4£¬3£¬2£¬1 D.1£¬4£¬2£¬3. 35.ÔÚÒ»¸ö˳ÐòÑ»·¶ÓÁÐÖУ¬¶ÓÊ×Ö¸ÕëÖ¸Ïò¶ÓÊ×ÔªËØµÄ£¨£©Î»ÖᣠAǰһ¸ö BºóÒ»¸ö Cµ±Ç° D×îºó 36.µ±ÀûÓôóСΪNµÄÊý×éÑ»·´æ´¢Ò»¸ö¶ÓÁÐʱ£¬¸Ã¶ÓÁеÄ×î´ó³¤¶ÈΪ£¨£©¡£ A.N-2 B.N-1 C.N D.N+1 37.´ÓÒ»¸ö˳ÐòÑ»·¶ÓÁÐÖÐɾ³ýÔªËØÊ±£¬Ê×ÏÈÐèÒª£¨£©¡£ A.Ç°ÒÆ¶ÓÊ×Ö¸Õë B.ºóÒÆ¶ÓÊ×Ö¸Õë C.È¡³ö¶ÓÊ×Ö¸ÕëËùָλÖÃÉϵÄÔªËØ D.È¡³ö¶ÓβָÕëËùָλÖÃÉϵÄÔªËØ 38.¼Ù¶¨Ò»¸ö˳ÐòÑ»·¶ÓÁеĶÓÊ׺ͶÓβָÕë·Ö±ðÓÃfºÍr±íʾ£¬ÔòÅж϶ӿյÄÌõ¼þΪ£¨£©¡£ A.f+1==r B.r+1==f C.f==0 D.f==r 39.¼Ù¶¨Ò»¸ö˳ÐòÑ»·¶ÓÁд洢ÓÚÊý×éa[N]£¬Æä¶ÓÊ׺ͶÓβָÕë·Ö±ðÓÃfºÍr±íʾ£¬ÔòÅж϶ÓÂúµÄÌõ¼þΪ£¨£©¡£ A.£¨r-1£©%N==f B.£¨r+1£©%N==f C.£¨f-1£©%N==r D.£¨f+1£©%N==r 40.¼Ù¶¨ÀûÓÃÊý×éa[N]Ñ»·Ë³Ðò´æ´¢Ò»¸ö¶ÓÁУ¬Æä¶ÓÊ׺ͶÓβָÕë·Ö±ðÓÃfºÍr±íʾ£¬²¢ÒÑÖª¶ÓÁÐδÂú£¬µ±ÔªËØxÈëÁÐʱËùÖ´ÐеIJÙ×÷Ϊ£¨£©¡£ A.a[++r%N]=x B.a[r++%N]=x C.a[--r%N]=x D.a[r--%N]=x 41.¼Ù¶¨ÀûÓÃÊý×éa[N]Ñ»·Ë³Ðò´æ´¢Ò»¸ö¶ÓÁУ¬Æä¶ÓÊ׺ͶÓβָÕë·Ö±ðÓÃfºÍr±íʾ£¬²¢ÒÑÖª¶ÓÁÐδ¿Õ£¬µ±³öÁв¢·µ»Ø¶ÓÊ×ÔªËØÊ±ËùÖ´ÐеIJÙ×÷Ϊ£¨£©¡£ A.return a[++r%N] B.return a[--r%N] C.return a[++f%N] D.return a[f++%N] 42.¼Ù¶¨Ò»¸öÁ´Ê½¶ÓÁеĶÓÊ׺ͶÓβָÕë·Ö±ðΪfrontºÍrear£¬ÔòÅж϶ӿյÄÌõ¼þΪ£¨£©¡£ A.front==rear B.front£¡=NULL C.rear£¡=NULL D.front==NULL 43.¼Ù¶¨Ò»¸öÁ´Ê½¶ÓÁеĶÓÊ׺ͶÓβָÕë·Ö±ðΪfrontºÍrear£¬Ã¿¸ö½áµã½á¹¹Îª,µ±³öÁÐʱËù½ø ÐеIJÙ×÷Ϊ£¨£©¡£ A.front=front->next B.rear=rear->next C.front->next =rear£»rear=rear->next D.front=front->next£»front->next =rear£» 44.¼Ù¶¨Ò»¸ö´øÍ·½áµãµÄÑ»·Á´Ê½¶ÓÁеĶÓÊ׺ͶÓβָÕë·Ö±ðÓÃfrontºÍrear±íʾ£¬ÔòÅж϶ԿյÄÌõ¼þΪ£¨£©¡£ A.front=rear->next B.rear==NULL C. front==NULL D. front ==rear 45.¼Ù¶¨Ò»¸öÁ´Ê½¶ÓÁеĶÓÊ׺ͶÓβָÕë·Ö±ðΪfrontºÍrear£¬Ã¿¸ö½áµã½á¹¹Îª°üº¬ÖµÓòdataºÍÖ¸ÕëÓònext,ÔòʹpËùÖ¸½áµãÈëÁÐËùÖ´ÐеIJÙ×÷Ϊ£¨£©¡£ A.p->next=NULL£»rear=rear->next=p£» B.p->next=rear->next£»rear=rear->next=p£» C.p->next=front£»front=p£» D.p->next=front->next£»front->next=p£» 46.ÔÚÒ»¸ö³¤¶ÈΪNµÄÊý×é¿Õ¼äÖУ¬Ñ»·Ë³Ðò´æ´¢×ÅÒ»¸ö¶ÓÁУ¬¸Ã¶ÓÁеĶÓÊ׺ͶÓβָÕë·Ö±ðÓÃfrontºÍrear±íʾ£¬Ôò¸Ã¶ÓÁÐÖÐÊý×éÔªËØ¸öÊýΪ£¨£©¡£ A.£¨rear-front£©%N B.£¨rear-front+N£©%N C.£¨rear+N£©%N D.£¨front+N£©%N 47.¶þάÊý×éA[12,10]²ÉÓÃÐÐÓÅÏÈ´æ´¢£¬Ã¿¸öÊý¾ÝÔªËØÕ¼ÓÃ4¸ö´æ´¢µ¥Ôª£¬¸ÃÊý×éµÄÊ×µØÖ·£¨¼´A[0£¬0]µÄµØÖ·£©Îª1200£¬ÔòA[6£¬5]µÄµØÖ·Îª£¨£©¡£ A.1400 B.1404 C.1372 D.1460 48.ÓÐÒ»¸öM¡ÁNµÄ¾ØÕóA£¬Èô²ÉÓÃÐÐÓÅÏȽøÐÐ˳Ðò´æ´¢£¬Ã¿¸öÔªËØÕ¼ÓÃ8¸ö×Ö½Ú£¬ÔòAij(1¡Üi¡ÜM,1¡Üj¡ÜN)ÔªËØµÄÏà¶Ô×Ö½ÚµØÖ·£¨Ïà¶ÔÊ×ÔªËØµØÖ·¶øÑÔ£©Îª£¨£©¡£ A.£¨£¨i-1£©¡ÁN+j£©¡Á8 B.£¨£¨i-1£©¡ÁN+j-1£©¡Á8 C.£¨i¡ÁN+j-1£©¡Á8 D.£¨£¨i-1£©¡ÁN+j+1£©¡Á8 49.ÓÐÒ»¸öN¡ÁNµÄÏÂÈý½Ç¾ØÕóA£¬Èô²ÉÓÃÐÐÓÅÏȽøÐÐ˳Ðò´æ´¢£¬Ã¿¸öÔªËØÕ¼ÓÃk¸ö×Ö½Ú£¬ÔòAij(1¡Üi¡ÜN,1¡Üj¡Üi)ÔªËØµÄÏà¶Ô×Ö½ÚµØÖ·£¨Ïà¶ÔÊ×ÔªËØµØÖ·¶øÑÔ£©Îª£¨£©¡£ A.£¨i¡Á£¨i+1£©/2+j-1£©¡Á4 B.£¨i¡Ái/2+j£©¡Á4 C.£¨i¡Á£¨i-1£©/2+j-1£©¡Á4 D.£¨i¡Á£¨i-1£©/2+j£©¡Á4 50.Ê÷ÖÐËùÓнáµãµÄ¶ÈµÈÓÚËùÓнáµãÊý¼Ó£¨£©¡£ A.0 B.1 C.-1 D.2 51.ÔÚÒ»¿ÃÊ÷ÖУ¬£¨£©Ã»ÓÐǰÇý½áµã¡£ A.Ê÷Ö¦½áµã B.Ò¶×Ó½áµã C.Ê÷¸ù½áµã D.¿Õ½áµã 52.ÔÚÒ»¿ÃÊ÷ÖУ¬Ã¿¸ö½áµã×î¶àÓУ¨£©¸öǰÇý½áµã¡£ A.0 B.1 C.2 D.ÈÎÒâ¶à¸ö 53.ÔÚÒ»¿Ã¶þ²æÊ÷µÄ¶þ²æÁ´±íÖУ¬¿ÕÖ¸ÕëÓòÊýµÈÓÚ·Ç¿ÕÖ¸ÕëÓòÊý¼Ó£¨£©¡£ A.2 B.1 C.0 D.-1 54.ÔÚÒ»¿Ã¾ßÓÐn¸ö½áµãµÄ¶þ²æÊ÷ÖУ¬ËùÓнáµãµÄ¿Õ×ÓÊ÷¸öÊýµÈÓÚ£¨£©¡£ A.n B.n-1 C.n+1 D.2n 55.ÔÚÒ»¿Ã¾ßÓÐn¸ö½áµãµÄ¶þ²æÊ÷µÄµÚi²ãÉÏ£¬×î¶à¾ßÓУ¨£©¸ö½áµã¡£ A.2i B.2i+1 C.2i-1 D.2n 56.ÔÚÒ»¿ÃÉî¶ÈΪhµÄÍêÈ«¶þ²æÊ÷ÖУ¬Ëùº¬½áµã¸öÊý²»Ð¡ÓÚ£¨£©¡£ A.2h B.2h+1 C.2h-1 D.2h-1 57.ÔÚÒ»¿ÃÉî¶ÈΪhµÄÍêÈ«¶þ²æÊ÷ÖУ¬Ëùº¬½áµã¸öÊý²»´óÓÚ£¨£©¡£ A.2h B.2h+1 C.2h-1 D.2h-1 58.ÔÚÒ»¿Ã¾ßÓÐ35¸ö½áµãµÄÍêÈ«¶þ²æÊ÷ÖУ¬¸ÃÊ÷µÄÉî¶ÈΪ£¨£©¡£ A.6 B.7 C.5 D.8 59.ÔÚÒ»¿ÃÍêÈ«¶þ²æÊ÷ÖУ¬Èô±àºÅΪiµÄ½áµã´æÔÚ×óº¢×Ó£¬Ôò×óº¢×Ó½áµã±àºÅΪ£¨£©¡£ A.2i B.2i-1 C.2i+1 D.2i+2 60.ÔÚÒ»¿ÃÍêÈ«¶þ²æÊ÷ÖУ¬Èô±àºÅΪiµÄ½áµã´æÔÚÓÒº¢×Ó£¬ÔòÓÒº¢×Ó½áµã±àºÅΪ£¨£©¡£ A.2i B.2i-1 C.2i+1 D.2i+2 61.ÔÚÒ»¿ÃÍêÈ«¶þ²æÊ÷ÖУ¬¶ÔÓÚ±àºÅΪi£¨i>1£©µÄ½áµãÆäË«Ç×½áµãµÄ±àºÅΪ£¨£©¡£ A.£¨i+1£©/2 B.£¨i-1£©/2 C.i%2 D.i/2 62.ÓÐÈçͼ1.1ËùʾµÄÒ»¿Ã¶þ²æÊ÷£¬Ôò¸Ã¶þ²æÊ÷Ëùº¬µ¥Ö§½áµãÊýΪ£¨£©¡£ A.2 B.3 C.4 D.5 63.ÓÐÈçͼ1.2ËùʾµÄÒ»¿Ã¶þ²æÊ÷£¬Ôò¸Ã¶þ²æÊ÷µÄÖÐÐò±éÀúÐòÁÐΪ£¨£©¡£ A. ABCDEFG B. CDBGFEA C. CBDAEGF D. ABECDFG 64.ÓÐÈçͼ1.2ËùʾµÄÒ»¿Ã¶þ²æÊ÷£¬Ôò¸Ã¶þ²æÊ÷µÄÏÈÐò±éÀúÐòÁÐΪ£¨£©¡£ A.ABCDEFG B.CDBGFEA C.CBDAEGF D.ABECDFG 65.ÓÐÈçͼ1.2ËùʾµÄÒ»¿Ã¶þ²æÊ÷£¬Ôò¸Ã¶þ²æÊ÷µÄºóÐò±ãÀûÐòÁÐΪ£¨£©¡£ A.ABCDEFG B.CDBGFEA C.CBDAEGF D.ABECDFG 66.ÀûÓÃn¸öÖµÉú³ÉµÄ¹þ·òÂüÊ÷Öй²ÓУ¨£©¸ö½áµã¡£ A.n B.n+1 C.2n D.2n-1 67.ÀûÓÃ3£¬6£¬8£¬12Õâ4¸öÖµ×÷ΪҶ×Ó½áµãµÄȨ£¬Éú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬¸ÃÊ÷µÄ´øÈ¨Â·¾¶³¤¶ÈΪ£¨£©¡£ A.55 B.29 C.58 D.38 68.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼÖУ¬ÈôËùÓж¥µãµÄ³ö¶ÈÊýÖ®ºÍΪs£¬ÔòËùÓеÄÈë¶ÈÊýÖ®ºÍΪ£¨£©¡£ A.s B.s-1 C.s+1 D.n 69.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼÖУ¬ÈôËùÓж¥µãµÄ³ö¶ÈÊýÖ®ºÍΪs£¬ÔòËùÓеĶÈÊýÖ®ºÍΪ£¨£©¡£ A. s B. s -1 C. s +1 D.2s 70.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòͼÖУ¬Èô¾ßÓÐeÌõ±ß£¬ÔòËùÓж¥µãµÄ¶ÈÊýΪ£¨£©¡£ A.n B.e C.n+e D.2e 71.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÍêȫͼÖУ¬Ëùº¬µÄ±ßÊýΪ£¨£©¡£ A.n B.n£¨n-1£© C.n£¨n-1£©/2 D.n£¨n+1£©/2 72.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòÍêȫͼÖУ¬Ëùº¬µÄ±ßÊýΪ£¨£©¡£ A.n B.n£¨n-1£© C.n£¨n-1£©/2 D.n£¨n+1£©/2 73.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÁ¬Í¨Í¼ÖУ¬Ëü°üº¬µÄÁ¬Í¨·ÖÁ¿µÄ¸öÊýΪ£¨£©¡£ A.0 B.1 C.n D.n+1 74.ÈôÓÐÒ»¸öͼÖаüº¬k¸öÁ¬Í¨·ÖÁ¿£¬Èô°´ÕÕÉî¶ÈÓÅÏÈËÑË÷µÄ·½·¨·ÃÎÊËùÓж¥µã£¬Ôò±ØÐëµ÷Ó㨣©´ÎÉî¶ÈÓÅÏÈËÑË÷±éÀúµÄËã·¨¡£ A.k B.1 C.k-1 D.k+1 75.ÈôÒª°Ñn¸ö¶¥µãÁ¬½ÓΪһ¸öÁ¬Í¨Í¼£¬ÔòÖÁÉÙÐèÒª£¨£©Ìõ±ß¡£ A.n B.n+1 C.n-1 D.2n 76.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼµÄÁÚ½Ó¾ØÕóÖУ¬±íʾ±ß´æÔÚµÄÔªËØ£¨ÓÖ³ÆÎªÓÐÐ§ÔªËØ£©µÄ¸öÊýΪ£¨£©¡£ A.n B.ne C.e D.2e 77.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÓÐÏòͼµÄÁÚ½Ó¾ØÕóÖУ¬±íʾ±ß´æÔÚµÄÔªËØµÄ¸öÊýΪ£¨£©¡£ A.n B.ne C.e D.2e 78.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÎÞÏòͼµÄÁÚ½Ó¾ØÕóÖУ¬±ß½áµãµÄ¸öÊýΪ£¨£©¡£ A.n B.ne C.e D.2e 79.¶ÔÓÚÒ»¸öÓÐÏòͼ£¬ÈôÒ»¸ö¶¥µãµÄ¶ÈΪk1£¬³ö¶ÈΪk2£¬Ôò¶ÔÓ¦ÁÚ½Ó±íÖиö¥µãµ¥Á´±íµÄ±ßÊý½áµãΪ£¨£©¡£ A.k1 B.k2 C.k1-k2 D.k1+k2 80.¶ÔÓÚÒ»¸öÓÐÏòͼ£¬ÈôÒ»¸ö¶¥µãµÄ¶ÈΪk1£¬³ö¶ÈΪk2£¬Ôò¶ÔӦĿÁÚ½Ó±íÖиö¥µãµ¥Á´±íµÄ±ßÊý½áµãΪ£¨£©¡£ A.k1 B.k2 C.k1-k2 D.k1+k2 81.¶ÔÓÚÒ»¸öÎÞÏòͼ£¬ÏÂÃæ£¨£©µÄ˵·¨ÊÇÕýÈ·µÄ¡£ A.ÿ¸ö¶¥µãµÄÈë¶ÈµÈÓÚ³ö¶È B.ÿ¸ö¶¥µãµÄ¶ÈµÈÓÚÈë¶ÈºÍ³ö¶ÈÖ®ºÍ C.ÿ¸ö¶¥µãµÄÈë¶ÈΪ0 D.ÿ¸ö¶¥µãµÄ³ö¶ÈΪ0 82.ÔÚÒ»¸öÓÐÏòͼµÄÁÚ½Ó±íÖУ¬Ã¿¸ö¶¥µãµ¥Á´±íÖнáµãµÄ¸öÊýµÈÓڸö¥µãµÄ£¨£©¡£ A.³ö±ßÊý B.Èë±ßÊý C.¶ÈÊý D.¶ÈÊý¼õÒ» 83.ÈôÒ»¸öͼµÄ±ß¼¯Îª{£¨A£¬B£©£¨A£¬C£©£¨B£¬D£©£¨C£¬F£©£¨D£¬E£©£¨D£¬F£©}£¬Ôò´Ó¶¥µãA¿ªÊ¼¶Ô¸Ãͼ½øÐÐÉî¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ£¨£©¡£ A. ABCFDE B. ACFDEB C. ABDCFE D. ABDFEC 84.ÈôÒ»¸öͼµÄ±ß¼¯Îª{£¨A£¬B£©£¨A£¬C£©£¨B£¬D£©£¨C£¬F£©£¨D£¬E£©£¨D£¬F£©}£¬Ôò´Ó¶¥µãA¿ªÊ¼¶Ô¸Ãͼ½øÐйã¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ£¨£©¡£ A.ABCDEF B.ABCFDE C.ABDCEF D.ACBFDE 85.ÈôÒ»¸öͼµÄ±ß¼¯{£¨1£¬2£©£¨1£¬4£©£¨2£¬5£©£¨3£¬1£©£¨3£¬5£©£¨4£¬3£©}£¬Ôò´Ó¶¥µã1¿ªÊ¼¶Ô¸Ãͼ½øÐÐÉî¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ£¨£©¡£ A.1£¬2£¬5£¬4£¬3 B.1£¬2£¬3£¬4£¬5 C.1£¬2£¬5£¬3£¬4 D.1£¬4£¬3£¬2£¬5 86.ÈôÒ»¸öͼµÄ±ß¼¯{£¨1£¬2£©£¨1£¬4£©£¨2£¬5£©£¨3£¬1£©£¨3£¬5£©£¨4£¬3£©}£¬Ôò´Ó¶¥µã1¿ªÊ¼¶Ô¸Ãͼ½øÐйã¶ÈÓÅÏÈËÑË÷£¬µÃµ½µÄ¶¥µãÐòÁпÉÄÜΪ£¨£©¡£ A. 1£¬2£¬3£¬4£¬5 B. 1£¬2£¬4£¬3£¬5 C. 1£¬2£¬4£¬5£¬3 D. 1£¬4£¬2£¬5£¬3 87.ÓÉÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÁ¬Í¨Í¼Éú³ÉµÄ×îСÊ÷ÖÐÓУ¨£©Ìõ±ß¡£ A.n B.n-1 C.n+1 D.2n 88.Èô²éÕÒÿһ¸öÔªËØµÄ¸ÅÂÊÏàµÈ£¬ÔòÔÚ³¤¶ÈΪnµÄ˳Ðò±íÉϲéÕÒÈÎÒ»ÔªËØµÄƽ¾ù²éÕÒ³¤¶ÈΪ£¨£©¡£ A. n B. n+1 C. (n-1)/2 D. (n+1)/2 89.¶Ô³¤¶ÈΪnµÄµ¥Á´ÓÐÐò±í£¬Èô²éÕÒÿ¸öÔªËØµÄ¸ÅÂÊÏàµÈ£¬Ôò²éÕÒÈÎÒ»¸öÔªËØµÄƽ¾ù²éÕÒ³¤¶ÈΪ£¨£©¡£ A. n/2 B.£¨n+1£©/2 C. (n-1)/2 D.n/4 90.¶ÔÓÚ³¤¶ÈΪ9µÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓöþ·Ö²éÕÒ£¬ÔڵȸÅÂÊÇé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶ÈΪ£¨£©µÄÖµ³ýÒÔ9¡£ A.20 B.18 C.25 D.22 91.¶ÔÓÚ³¤¶ÈΪ18µÄ˳Ðò´æ´¢µÄÓÐÐò±í£¬Èô²ÉÓöþ·Ö²éÕÒ£¬Ôò²éÕÒµÚ15¸öÔªËØµÄ²éÕÒ³¤¶ÈΪ£¨£©¡£ A.2 B.3 C.4 D.6 92.¶ÔÓÚ˳Ðò´æ´¢µÄÓÐÐò±í£¨5£¬12£¬20£¬26£¬37£¬42£¬46£¬50£¬64£©£¬Èô²ÉÓöþ·Ö²éÕÒ£¬Ôò²éÕÒÔªËØ26µÄ²éÕÒ³¤¶ÈΪ£¨£©¡£ A.2 B.3 C.4 D.5 93.ÔÚ·Ö¿é²éÕÒÖУ¬ÈôÓÃÓÚ±£´æÊý¾ÝÔªËØµÄÖ÷±í³¤¶ÈΪn£¬Ëü±»·ÖΪk¸ö×Ó±í£¬Ã¿¸ö×Ó±íµÄ³¤¶È¾ùΪn/k£¬ÈôÓÃ˳Ðò²éÕÒÈ·¶¨¿é£¬Ôò·Ö¿é²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ£¨£©¡£ A.n+k B.k+n/k C.£¨k+n/k£©/2 D.£¨k+n/k£©/2+1 94.ÔÚ·Ö¿é²éÕÒÖУ¬ÈôÓÃÓÚ±£´æÊý¾ÝÔªËØµÄÖ÷±í³¤¶ÈΪ144£¬Ëü±»·ÖΪ12¸ö×Ó±í£¬Ã¿¸ö×Ó±íµÄ³¤¶È¾ùΪ12£¬ÈôÓÃ˳Ðò²éÕÒÈ·¶¨¿é£¬Ôò·Ö¿é²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ£¨£©¡£ A.13 B.24 C.12 D.79 95.ÔÚÒ»¿ÃÉî¶ÈΪhµÄ¾ßÓÐn¸öÔªËØµÄ¶þ²æÅÅÐòÊ÷ÖУ¬²éÕÒËùÓÐÔªËØµÄ×²éÕÒ³¤¶ÈΪ£¨£©¡£ A.n B.lbn C.£¨h+1£©/2 D.h 96.ÔÚÒ»¿Ãƽºâ¶þ²æÅÅÐòÊ÷ÖУ¬Ã¿¸ö½áµãµÄƽºâÒò×ÓµÄȡֵ·¶Î§ÊÇ£¨£©¡£ A.-1~1 B.-2~2 C.1~2 D.0~1 97.Èô¸ù¾Ý²éÕÒ±í£¨23£¬44£¬36£¬48£¬52£¬73£¬64£¬58£©½¨Á¢ÏßÐÔ¹þÏ£±í£¬²ÉÓÃH£¨K£©=K¼ÆËã¹þÏ£µØÖ·£¬ÔòÔªËØ64µÄ¹þÏ£µØÖ·Îª£¨£©¡£ A.4 B.8 C.12 D.13 98.Èô¸ù¾Ý²éÕÒ±í£¨23£¬44£¬36£¬48£¬52£¬73£¬64£¬58£©½¨Á¢ÏßÐιþÏ£±í£¬²ÉÓÃH£¨K£©=K¼ÆËã¹þÏ£µØÖ·£¬Ôò¹þÏ£µØÖ·Îª3µÄÔªËØ¸öÊýΪ£¨£©¡£ A.1 B.2 C.3 D.4 99.Èô¸ù¾Ý²éÕÒ±í½¨Á¢³¤¶ÈΪmµÄÏßÐÔ¹þÏ£±í£¬²ÉÓÃÏßÐÔ̽²âÔÙ¹þÏ£·¨´¦Àí³åÍ»£¬¼Ù¶¨¶ÔÒ»¸öÔªËØµÚÒ»´Î¼ÆËãµÄ¹þÏ£µØÖ·Îªd£¬ÔòÏÂÒ»´ÎµÄ¹þÏ£µØÖ·Îª£¨£©¡£ A.d B.d+1 C.£¨d+1£©/m D.£¨d+1£©%m 100.ÔÚ²ÉÓÃÏßÐÔ̽²âÔÙ¹þÏ£·¨´¦Àí³åÍ»µÄÏßÐÔ¹þÏ£±íÉÏ£¬¼Ù¶¨×°ÌîÒò×ÓaµÄֵΪ0.5£¬Ôò²éÕÒÈÎÒ»¸öÔªËØµÄƽ¾ù²éÕÒ³¤¶ÈΪ£¨£©¡£ A.1 B.1.5 C.2 D.2.5 101.ÔÚ¹þÏ£²éÕÒÖУ¬Æ½¾ù²éÕÒ³¤¶ÈÖ÷ÒªÓ루£©Óйء£ A.¹þÏ£±í³¤¶È B.¹þÏ£ÔªËØ¸öÊý C.×°ÌîÒò×Ó D.´¦Àí³åÍ»·½·¨ 102.Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬Ôò½øÐеÚiÌËÅÅÐò¹ý³Ìǰ£¬ÓÐÐò±íÖÐÔªËØµÄ¸öÊýΪ£¨£©¡£ A.i B.i+1 C.i-1 D.1 103.Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬ÔÚ½øÐеÚiÌËÅÅÐòʱ£¬ÎªÑ°ÕÒ²åÈëλ×Ó×î¶àÐèÒª½øÐУ¨£©´ÎÔªËØµÄ±È½Ï£¬¼Ù¶¨µÚ0ºÅÔªËØ·ÅÓдý²éµÄ¼üÖµ¡£ A. i B.i-1 C.i+1 D.1 104.Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬ÔÚ½øÐеÚiÌËÅÅÐòʱ,¼Ù¶¨ÔªËØr[i+1]µÄ²åÈëλÖÃΪr[j]£¬ÔòÐèÒªÒÆ¶¯ÔªËصĴÎÊýΪ£¨£©¡£ A.j-i B.i-j-1 C.i-j D.i-j+1 105.Èô¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐò£¬ÔÚ½øÐÐÈÎÒâÒ»ÌËÅÅÐòµÄ¹ý³ÌÖУ¬ÎªÑ°ÕÒ²åÈëλÖöøÐèÒªµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A.O£¨1£© B.O£¨n£© C.O£¨n2£© D. O£¨lbn£© 106.ÔÚ¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐòµÄ¹ý³ÌÖУ¬¹²ÐèÒª½øÐУ¨£©ÌË¡£ A.n B.n+1 C.n-1 D.2n 107.¶Ôn¸öÔªËØ½øÐÐÖ±½Ó²åÈëÅÅÐòµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A.O£¨1£© B.O£¨n£© C.O£¨n2£© D. O£¨lbn£© 108.ÔÚ¶Ôn¸öÔªËØ½øÐÐðÅÝÅÅÐòµÄ¹ý³ÌÖУ¬µÚÒ»ÌËÅÅÐòÖÁ¶à½øÐУ¨£©¶ÔÏàÁÚÔªËØÖ®¼äµÄ½»»»¡£ A .n B.n-1 C.n+1 D.n/2 109.ÔÚ¶Ôn¸öÔªËØ½øÐÐðÅÝÅÅÐòµÄ¹ý³ÌÖУ¬×Çé¿öϵÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A.O£¨1£© B.O£¨lbn£© C.O£¨n2£© D.O£¨n£© 110.ÔÚ¶Ôn¸öÔªËØ½øÐÐðÅÝÅÅÐòµÄ¹ý³ÌÖУ¬ÖÁ¶àÐèÒª£¨£©ÌËÍê³É¡£ A .1 B.n C.n-1 D.n/2 111.ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬×îºÃÇé¿öÏÂÐèÒª½øÐУ¨£©ÌË¡£ A.n B.n/2 C.lbn D.2n 112.ÔÚ¶Ôn¸öÔªËØ½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬×Çé¿öÏÂÐèÒª½øÐУ¨£©ÌË¡£ A.n B.n-1 C.n/2 D.lbn 113.¶ÔÏÂÁÐ4¸öÐòÁнøÐпìËÙÅÅÐò£¬¸÷ÒÔµÚÒ»¸öÔªËØÎª»ù×¼½øÐеÚÒ»´Î»®·Ö£¬ÔòÔڸôλ®·Ö¹ý³ÌÖÐÐèÒªÒÆ¶¯ÔªËØ´ÎÊý×î¶àµÄÐòÁÐΪ£¨£©¡£ A.1£¬3£¬5£¬7£¬9 B.9£¬7£¬5£¬3£¬1 C.5£¬3£¬1£¬7£¬9 D.5£¬7£¬9£¬1£¬3 114.¼Ù¶¨¶ÔÔªËØÐòÁУ¨7£¬3£¬5£¬9£¬1£¬12£¬8£¬15£©½øÐпìËÙÅÅÐò£¬Ôò½øÐеÚÒ»´Î»®·Öºó£¬µÃµ½µÄ×óÇø¼äÖÐÔªËØµÄ¸öÊýΪ£¨£©¡£ A.2 B.3 C.4 D.5 115.ÔÚ¶Ôn¸öÔªËØ½øÐмòµ¥Ñ¡ÔñÅÅÐòµÄ¹ý³ÌÖУ¬ÔÚµÚiÌËÐèÒª´Ó£¨£©¸öÔªËØÖÐÑ¡Ôñ³ö×îÐ¡ÖµÔªËØ¡£ A.n-i+1 B.n-i C.i D.i+1 116.Èô¶Ôn¸öÔªËØ½øÐмòµ¥Ñ¡ÔñÅÅÐò£¬Ôò½øÐÐÈÎÒ»ÌËÅÅÐòµÄ¹ý³ÌÖУ¬ÎªÑ°ÕÒ×îÐ¡ÖµÔªËØËùÐèÒªµÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A.O£¨1£© B.O£¨lbn£© C.O£¨n2£© D. O£¨n£© 117.¼Ù¶¨Ò»¸ö³õʼ¶ÑΪ£¨1£¬5£¬3£¬9£¬12£¬7£¬15£¬10£©£¬Ôò½øÐеÚÒ»Ì˶ÑÅÅÐòºóµÃµ½µÄ½á¹ûΪ£¨£©¡£ A.3£¬5£¬7£¬9£¬12£¬10£¬15£¬1 B.3£¬5£¬9£¬7£¬12£¬10£¬15£¬1 C.3£¬7£¬5£¬9£¬12£¬10£¬15£¬1 D.3£¬5£¬7£¬12£¬9£¬10£¬15£¬1 118.ÈôÒ»¸öÔªËØÐòÁлù±¾ÓÐÐò£¬ÔòÑ¡Ó㨣©·½·¨½Ï¿ì¡£ A.Ö±½Ó²åÈëÅÅÐò B.¼òµ¥Ñ¡ÔñÅÅÐò C.¶ÑÅÅÐò D.¿ìËÙÅÅÐò 119.ÈôÒª´Ó1000¸öÔªËØÖеõ½10¸ö×îÐ¡ÔªËØ£¬×îºÃ²ÉÓ㨣©·½·¨¡£ A.Ö±½Ó²åÈëÅÅÐò B.¼òµ¥Ñ¡ÔñÅÅÐò C.¶ÑÅÅÐò D.¿ìËÙÅÅÐò 120.ÔÚÆ½¾ùÇé¿öÏÂËÙ¶È×î¿ìµÄÅÅÐò·½·¨Îª£¨£©¡£ A.¼òµ¥Ñ¡ÔñÅÅÐò B.ðÅÝÅÅÐò C.¶ÑÅÅÐò D.¿ìËÙÅÅÐò ¶þ©pÌî¿ÕÌâ 1.Êý¾ÝµÄÂß¼½á¹¹¿É·ÖΪ____ºÍ____Á½´óÀà¡£ 2.Êý¾ÝµÄ´æ´¢½á¹¹±»·ÖΪ____£¬_____£¬_____ºÍ____4ÖÖ¡£ 3.ÔÚÏÂÃæµÄ³ÌÐò¶ÎÖУ¬s=s+pÓï¾ä±»Ö´ÐдÎÊýΪ____£¬p*=jÓï¾äµÄÖ´ÐдÎÊýΪ____,¸Ã³ÌÐòµÄ¸´ÔÓ¶ÈΪ____¡£ int i=0£¬s=0£» while£¨++i<=n£© { int p=1; for(int j=1;j<=i;j++) p*=j; s=s+p; } 4.Ò»ÖÖÊý¾Ý½á¹¹µÄÔªËØ¼¯ºÏKºÍËüµÄ¶þÔª¹ØÏµRΪ£ºK={a,b,c,d,e,f,g,h} R={£¬£¬ 5.ÏßÐÔ±íµÄÁ½ÖÖ´æ´¢½á¹¹·Ö±ðΪ____ºÍ____¡£ 6.ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹³ÆÎª____£¬Á´Ê½´æ´¢½á¹¹³ÆÎª____¡£ 7.Èô¾³£ÐèÒª¶ÔÏßÐÔ±í½øÐвåÈëºÍɾ³ýÔËË㣬Ôò×îºÃ²ÉÓÃ__´æ´¢½á¹¹£¬Èô¾³£ÐèÒª¶ÔÏßÐÔ±í ½øÐвéÕÒÔËË㣬Ôò×îºÃ²ÉÓÃ____´æ´¢½á¹¹¡£ 8.¶ÔÓÚÒ»¸ö³¤¶ÈΪnµÄ˳Ðò´æ´¢µÄÏßÐÔ±í£¬ÔÚ±íÍ·²åÈëÔªËØµÄʱ¼ä¸´ÔÓ¶ÈΪ____¡£ 9.¶ÔÓÚÒ»¸öµ¥Á´±í´æ´¢µÄÏßÐÔ±í£¬ÔÚ±íÍ·²åÈë½áµãµÄʱ¼ä¸´ÔÓ¶ÈΪ____£¬ÔÚ±íβ²åÈë½áµãµÄʱ¼ä¸´ÔÓ¶ÈΪ____¡£ 10.ÔÚÏßÐÔ±íµÄµ¥Á´±í´æ´¢ÖУ¬ÈôÒ»¸öÔªËØËùÔÚ½áµãµÄµØÖ·Îªp£¬ÔòÆäºóµÄ¶Ï½áµãµÄµØÖ·Îª____¡£ 11.ÔÚÒÔHLΪͷָÕëµÄ´øÍ·½áµãµÄµ¥Á´±íºÍÑ»·µ¥Á´±íÖУ¬Á´±íΪ¿ÕµÄÌõ¼þ·Ö±ðΪ____ºÍ____¡£ 12.ÔÚ____Á´±íÖУ¬¼È¿ÉÒÔͨ¹ýÉ趨һ¸öÍ·Ö¸Õ룬Ҳ¿ÉÒÔͨ¹ýÉ趨һ¸öβָÕëÀ´È·¶¨Ëü£¬¼´Í¨¹ýÍ·Ö¸Õë»òβָÕë¿ÉÒÔ·ÃÎʵ½¸ÃÁ´±íµÄÿ¸ö½áµã¡£ 13.ÔÚÒ»¸öµ¥Á´±íÖÐɾ³ýÖ¸ÕëpËùÖ¸Ïò½áµãµÄºó¼Ì½áµãʱ£¬ÐèÒª°Ñ____µÄÖµ¸³¸øp->nextÖ¸ÕëÓò¡£ 14.ÔÚÒ»¸öµ¥Á´±íÖÐÖ¸ÕëpËùÖ¸Ïò½áµãµÄºóÃæ²åÈëÒ»¸öÖ¸ÕëqËùÖ¸ÏòµÄ½Úµãʱ£¬Ê×ÏȰÑ____µÄÖµ¸³¸øp->next£¬È»ºó°Ñ____µÄÖµ¸³¸øp->next¡£ 15.¼Ù¶¨Ö¸Ïòµ¥Á´±íÖеÚÒ»¸ö½áµãµÄÍ·Ö¸ÕëΪhead£¬ÔòÏñ¸Ãµ¥Á´±íµÄ±íÍ·²åÈëÖ¸ÕëpËùÖ¸ÏòµÄнáµãʱ£¬Ê×ÏÈÖ´ÐÐ____¸³Öµ²Ù×÷£¬È»ºóÖ´ÐÐ____¸³Öµ²Ù×÷¡£ 16.·ÃÎÊÒ»¸ö˳Ðò±íºÍÒ»¸öµ¥Á´±íÖеÚi¸öÔªËØµÄʱ¼ä¸´ÔÓ¶È·Ö±ðΪ____ºÍ____¡£ 17.ÔÚÒ»¸ö´øÍ·½áµãµÄÑ»·µ¥Á´±íÖУ¬ÔÚ±íÍ·²åÈë»òɾ³ýÓëÔÚÆäËüλÖòåÈëºÍɾ³ý£¬Æä²Ù×÷¹ý³ÌÊÇ·ñÏàͬ£¿________¡£ 18.ÔÚË«ÏòÁ´±íÖÐÿ¸ö½áµã°üº¬ÓÐÁ½¸öÖ¸ÕëÓò£¬Ò»¸öÖ¸ÏòÆä____½áµã£¬ÁíÒ»¸öÖ¸ÏòÆä____½áµã¡£ 19.ÔÚÒ»¸öË«ÏòÁ´±íÖÐÖ¸ÕëpËùÖ¸ÏòµÄ½áµãÖ®ºó²åÈëÒ»¸öÖ¸ÕëqËùÖ¸ÏòµÄ½áµãʱ£¬ÐèÒª¶Ôp->next->priorÖ¸ÕëÓò¸³ÖµÎª____¡£ 20.ÔÚÒ»¸öË«ÏòÁ´±íÖÐɾ³ýÖ¸ÕëpËùÖ¸ÏòµÄ½áµãʱ£¬ÐèÒª¶Ôp->next->priorÖ¸ÕëÓò¸³ÖµÎª____¡£ 21.Õ»ÓÖ³ÆÎª____±í£¬¶ÓÁÐÓÖ³ÆÎª____±í¡£ 22.ÔÚÒ»¸öÓÃһάÊý×éa[N]±íʾµÄ˳ÐòÕ»ÖУ¬¸ÃÕ»Ëùº¬ÔªËصĸöÊý×îÉÙΪ____¸ö£¬×î¶àΪ____¸ö¡£ 23.ÏñÒ»¸ö˳ÐòÕ»²åÈëÒ»¸öÔªËØÊ±£¬Ê×ÏÈʹ____ºóÒÆÒ»¸öλÖã¬È»ºó°ÑÐÂÔªËØ____µ½Õâ¸öλ×Ó¡£ 24.´ÓÒ»¸öջɾ³ýÔªËØÊ±£¬Ê×ÏÈÈ¡³ö____£¬È»ºóÔÙʹ____¼õÒ»¡£ 25.Ò»¸ö˳ÐòÕ»´æ´¢Ò»¸öһάÊý×éa[M]ÖУ¬Õ»¶¥Ö¸ÕëÓÃtop±íʾ£¬µ±Õ»¶¥Ö¸ÕëµÈÓÚ____ʱΪ¿ÕÕ»£¬Õ»¶¥Ö¸ÕëΪ____ʱΪÂúÕ»¡£ 26.¼Ù¶¨Ò»¸öÁ´Õ»µÄÕ»¶¥Ö¸ÕëΪtop£¬Ã¿¸ö½áµã°üº¬ÖµÓòdataºÍÖ¸ÕëÓònext£¬µ±pËùÖ¸ÏòµÄ½áµãÈëջʱ£¬ÔòÊ×ÏÈÖ´ÐÐ____²Ù×÷£¬È»ºóÖ´ÐÐ____²Ù×÷¡£ 27. ¼Ù¶¨Ò»¸öÁ´Õ»µÄÕ»¶¥Ö¸ÕëΪtop£¬Ã¿¸ö½áµã°üº¬ÖµÓòdataºÍÖ¸ÕëÓònext£¬µ±½øÐгöÕ»ÔËËãʱ£¨¼Ù¶¨Õ»·Ç¿Õ£©£¬ÐèÒª°ÑÕ»¶¥Ö¸ÕëÐÞ¸ÄΪ____µÄÖµ¡£ 28.ÉèÔªËØ1£¬2£¬3£¬4£¬5ÒÀ´Î½øÕ»£¬ÈôÒªÔÚÊä³ö¶ËµÃµ½ÐòÁÐ34251£¬ÔòÓ¦½øÐеIJÙ×÷ÐòÁÐΪPush(s,1),Push(s,2),____,Pop(s),Push(s,4),Pop(s),____,____,Pop(s),Pop(s)¡£ 29.ÉèÔªËØa£¬b£¬c£¬dÒÀ´Î½øÕ»£¬ÈôÒªÔÚÊä³ö¶ËµÃµ½ÐòÁÐcbda£¬ÔòÓ¦½øÐеIJÙ×÷ÐòÁÐΪpush(s,a),push(s,b),push(s,c),____,____£¬____pop(s),pop(s)¡£ 30.¶ÓÁеIJåÈë²Ù×÷ÔÚ____½øÐУ¬É¾³ý²Ù×÷ÔÚ____½øÐС£ 31.Ò»¸ö˳ÐòÑ»·¶ÓÁдæÔÚÓÚa[M]ÖÐ,¼Ù¶¨¶ÓÊ׺ͶÓβָÕë·Ö±ðΪfrontºÍrear£¬ÔòÅж϶ԿյÄÌõ¼þΪ____£¬Åж϶ÔÂúµÄÌõ¼þΪ____¡£ 32.Ò»¸ö˳ÐòÑ»·¶ÓÁдæÔÚÓÚa[M]ÖÐ,¼Ù¶¨¶ÓÊ׺ͶÓβָÕë·Ö±ðΪfrontºÍrear£¬ÔòÇó³ö¶ÓÊ×ºÍ ¶ÓβָÕëµÄÏÂÒ»¸öλÖõļÆË㹫ʽ·Ö±ðΪ________ºÍ________¡£ 33.ÔÚÒ»¸öÓÃһάÊý×éa[N]´æ´¢µÄ˳ÐòÑ»·¶ÓÁÐÖУ¬¸Ã¶ÓÁÐÖеÄÔªËØ¸öÊý×îÉÙΪ____¸ö£¬×î¶àΪ____¸ö¡£ 34.ÏòÒ»¸ö˳ÐòÑ»·¶ÓÁÐÖвåÈëÔªËØÊ±£¬ÐèÒªÊ×ÏÈÒÆ¶¯____£¬È»ºóÔÙÏòËüËùָλÖÃ____ÐÂÔªËØ¡£ 35.ÔÚÒ»¸ö¿ÕÁ´¶ÓÁÐÖУ¬¼Ù¶¨¶ÓÊ׺ͶÓβָÕë·Ö±ðΪfºÍr£¬µ±ÏòËû²åÈëÒ»¸öнáµã*pʱ£¬ÔòÊ×ÏÈÖ´ÐÐ____²Ù×÷£¬È»ºóÖ´ÐÐ____²Ù×÷¡£ 36.ÔÚÒ»¸ö´øÍ·½áµãµÄÑ»·Á´¶ÓÁÐÖУ¬¼Ù¶¨¶ÓÊ׺ͶÓβָÕë·Ö±ðΪfºÍr£¬µ±ÏòËü²åÈëÒ»¸öнáµã*pʱ£¬ÔòÊ×ÏÈÖ´ÐÐ____²Ù×÷£¬È»ºóÖ´ÐÐ____²Ù×÷¡£ 37.¼Ù¶¨frontºÍrear·Ö±ðΪһ¸öÁ´¶ÓÁеĶÔÊ׺ͶÓβָÕ룬Ôò¸ÃÁ´¶ÓÁÐÖÐÖ»ÓÐÒ»¸ö½áµãµÄÌõ¼þΪ________¡£ 38.ÔÚÒ»¸öÁ´Õ»ÖУ¬ÈôÕ»¶¥Ö¸ÕëµÈÓÚNULLÔòΪ____£»ÔÚÒ»¸öÁ´¶ÓÁÐÖУ¬Èô¶ÔÊ׺ͶÓβµÄÖ¸ÕëÏàͬ£¬Ôò±íʾ¸Ã¶ÓÁÐΪ____»ò¸Ã¶ÓÁÐ____¡£ 39.Ò»¸ö¶þάÊý×éA[15£¬10]²ÉÓÃÐÐÓÅÏÈ·½Ê½´æ´¢£¬Ã¿¸öÊý¾ÝÔªËØÕ¼ÓÃ4¸ö´æ´¢µ¥Ôª£¬ÒÔ¸ÃÊý×éµÚ3ÁеÚ0ÐеĵØÖ·£¨¼´A[3£¬0]µÄµØÖ·£©1000ΪÊ×µØÖ·£¬ÔòA[12£¬9]µÄµØÖ·Îª____¡£ 40.ÔÚ¶þάÊý×éa[10,20]ÖУ¬Ã¿¸öÔªËØÕ¼8¸ö´æ´¢µ¥Ôª£¬¼Ù¶¨¸ÃÊý×éµÄÊ×µØÖ·Îª2000£¬ÔòÊý×éÔªËØa[6,15]µÄ×Ö½ÚµØÖ·Îª____¡£ 41.ÓÐÒ»¸ö8¡Á8µÄÏÂÈý½Ç¾ØÕóA£¬Èô½«Æä½øÐÐ˳Ðò´æ´¢ÓÚһάÊý×éa[N]ÖУ¬ÔòNµÄֵΪ____¡£ 42.ÓÐÒ»¸ö10¡Á10µÄÏÂÈý½Ç¾ØÕóA£¬Èô½«Æä½øÐÐ˳Ðò´æ´¢ÓÚһάÊý×éa[N]ÖУ¬ÔòAij£¨1¡Üi¡Ü10,1¡Üj¡Üi£©´æ´¢ÓÚaÖеÄϱêλÖÃΪ____¡£ 43.ÓÐÒ»¸ö8¡Á8µÄÏÂÈý½Ç¾ØÕóA£¬Èô½«Æä½øÐÐ˳Ðò´æ´¢£¬Ã¿¸öÔªËØÕ¼ÓÃ4¸ö×Ö½Ú£¬ÔòA5£¬4ÔªËØµÄÏà¶Ô×Ö½ÚµØÖ·Îª£¨Ïà¶ÔÊ×ÔªËØµØÖ·¶øÑÔ£©____¡£ 44.Ò»ÖÖÊý¾Ý½á¹¹µÄÔªËØ¼¯ºÏKºÍËüµÄ¶þÔª¹ØÏµRΪ£º K={a,b,c,d,e,f,g,h} R={ 46.ÔÚÒ»¿ÃÊ÷ÖУ¬____½áµãûÓÐǰÇý½áµã£¬ÆäÓàÿ¸ö½áµãÓв¢ÇÒÖ»ÓÐÒ»¸ö____£¬¿ÉÒÔÓÐÈËÒÔ¶à¸ö____½áµã¡£ 47.Èçͼ1.3ËùʾΪһ¿ÃÊ÷£¬¸ÃÊ÷µÄÒ¶×Ó½áµãÊýΪ____¸ö£¬µ¥Ö§½áµãÊýΪ____¸ö£¬Ë«·ÖÖ§½áµãÊýΪ____¸ö£¬Èý·ÖÖ§½áµãÊýΪ____¸ö¡£ 48.Èçͼ1.3ËùʾµÄÒ»¿ÃÊ÷£¬½áµãKµÄËùÓÐ׿ÏȵĽáµãÊýΪ____¸ö£¬½áµãBµÄËùÓÐ×ÓËï½áµãÊýΪ____¸ö¡£ 49.Èçͼ1.3ËùʾµÄÒ»¿ÃÊ÷£¬½áµãDºÍXµÄ²ãÊý·Ö±ðΪ____ºÍ____¡£ 50.Èçͼ1.4ËùʾµÄÒ»¿ÃÊ÷£¬ÔòÊ÷ÖÐËùº¬µÄ½áµãÊýΪ____¸ö£¬Ê÷µÄÉî¶ÈΪ____£¬Ê÷µÄ¶ÈΪ____¡£ 51.Èçͼ1.4ËùʾµÄÒ»¿ÃÊ÷£¬Ôò¶ÈΪ3£¬2£¬1£¬0µÄ½áµãÊý·Ö±ðΪ____£¬____£¬____¡£ 52.Èçͼ1.4Ëùʾһ¿ÃÊ÷£¬Ôò½áµãHµÄË«Ç×Ϊ____£¬º¢×Ó½áµãΪ____¡£ 53.ÔÚÒ»¿Ã¶þ²æÊ÷ÖУ¬¼Ù¶¨Ë«·ÖÖ§½áµãÊýΪ5¸ö£¬µ¥·ÖÖ§½áµãÊýΪ6¸ö£¬ÔòÒ¶×Ó½áµãÊýΪ____¡£ 54.¶ÔÓÚÒ»¿Ã¶þ²æÊ÷£¬ÈôÒ»¸ö½áµãµÄ±àºÅi£¬ÈôËüµÄ×óº¢×Ó½áµã´æÔÚ£¬ÔòÆä±àºÅΪ____£¬ÈôÓÒº¢×Ó½áµã´æÔÚ£¬ÔòÆä±àºÅΪ____£¬ÈôË«Ç×½áµã´æÔÚ£¬ÔòÆä±àºÅΪ____¡£ 55.ÔÚÒ»¿Ã¶þ²æÊ÷ÖУ¬µÚ5²ãÉϵĽáµãÊý×î¶àΪ____¡£ 56.¼Ù¶¨Ò»¿Ã¶þ²æÊ÷µÄ½áµãÊýΪ18£¬ÔòËüµÄ×îСÉî¶ÈΪ____£¬×î´óÉî¶ÈΪ____¡£ 57.Èçͼ1.5ËùʾΪһ¿Ã¶þ²æÊ÷£¬ÔòE½áµãµÄË«Ç×½áµãÊýΪ____£¬×óº¢×Ó½áµãΪ____£¬ÓÒº¢×Ó½áµãΪ____¡£ 58.Èçͼ1.5ËùʾΪһ¿Ã¶þ²æÊ÷£¬Ëüº¬ÓÐ˫֧½áµã____¸ö£¬µ¥·ÖÖ§½áµã____¸ö£¬Ò¶×Ó½áµã____ ¸ö¡£ 59.¼Ù¶¨Ò»¿Ã¶þ²æÊ÷˳Ðò´æ´¢ÔÚһάÊý×éaÖУ¬Èôa[5]ÔªËØµÄ×óº¢×Ó´æÔÚÔò¶ÔÓ¦µÄÔªËØÎª____£¬ÈôÓÒº¢×Ó´æÔÚÔò¶ÔÓ¦µÄÔªËØÎª____£¬Ë«Ç×ÔªËØÎª____¡£ 60.Èô¶ÔÒ»¿Ã¶þ²æÊ÷´Ó0¿ªÊ¼½øÐнáµã±àºÅ£¬²¢°´´Ë±àºÅ°ÑËü´æ´¢µ½Ò»Î¬Êý×éaÖУ¬¼´±àºÅΪ0µÄ½áµã´æ´¢µ½a[0]ÖУ¬ÒÀ´ÎÀàÍÆ£¬Ôòa[i]ÔªËØµÄ×óº¢×ÓΪ____£¬ÓÒº¢×ÓΪ____£¬Ë«Ç×ÔªËØ£¨i>0£©Îª____¡£ 61.¶ÔÓÚÒ»¿Ã¾ßÓÐn¸ö½áµãµÄ¶þ²æÊ÷£¬¶ÔÓ¦____¶þ²æÁ´±íÖÐÖ¸Õë×ÜÊýΪ____¸ö£¬ÆäÖÐ____¸öÓÃÓÚÖ¸Ïòº¢×Ó½áµã£¬____¸öÖ¸Õë¿ÕÏС£ 62.ÔÚÒ»¿ÃÉî¶ÈΪhµÄÍêȫƽºâ¶þ²æÊ÷ÖУ¬×îÉÙº¬ÓÐ____¸ö½áµã£¬×î¶àº¬ÓÐ____¸ö½áµã¡£ 63.Ò»¿ÃÉî¶ÈΪ5µÄÍêÈ«¶þ²æÊ÷ÖеĽáµãÊý×îÉÙΪ____¸ö£¬×î¶àΪ____¸ö¡£ 64.Èçͼ1.6ËùʾΪһ¿Ã¶þ²æÊ÷£¬¶ÔËü½øÐÐÏÈÐò±éÀú½á¹ûΪ____¡£ 65.Èô½«Èçͼ1.7ËùʾΪһ¿ÃÊ÷ת»»Îª¶þ²æÊ÷£¬¸Ã¶þ²æÊ÷ÖÐ˫֧½áµãµÄ¸öÊýΪ____¸ö£¬µ¥Ö§½áµãµÄ¸öÊýΪ____¸ö£¬Ò¶×Ó½áµã¸öÊýΪ____¡£ 66.Ò»¿ÃÊ÷ת»»Îª¶þ²æÊ÷ºóÈçͼ1.8Ëùʾ£¬ÔòÔÊ÷ÖзÖÖ§½áµãÊýΪ____£¬Ò¶×Ó½áµãÊýΪ____¡£ 67.Ò»¸öÊ÷ÁÖת»»³É¶þ²æÊ÷ºóÈçͼ1.9Ëùʾ£¬Ôò¸ÃËØÁÖÖаüº¬____¿ÃÊ÷¡£ 68.ÈôÓÉ3£¬6£¬8£¬12£¬10×÷ΪҶ×Ó½áµãµÄÖµÉú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬Ôò¸ÃÊ÷µÄÉî¶ÈΪ____£¬´øÈ¨Â·¾¶³¤¶ÈΪ____¡£ 69.Ò»ÖÖÊý¾Ý½á¹¹µÄÔªËØ¼¯ºÏKºÍËüµÄ¶þÔª¹ØÏµRΪ£ºK={1£¬2£¬3£¬4£¬5£¬6} R={£¨1£¬2£©£¨2£¬3£©£¨2£¬4£©£¨3£¬4£©£¨3£¬5£©£¨3£¬6£©£¨4£¬5£©£¨4£¬6£©} Ôò¸ÃÊý¾Ý½á¹¹¾ßÓÐ____Êý¾Ý½á¹¹¡£ 70.ÔÚÒ»¸öͼÖУ¬ËùÓж¥µãµÄ¶ÈÊýÖ®ºÍµÈÓÚËùÓбßÊýµÄ____±¶¡£ 71.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòÍêȫͼÖУ¬°üº¬ÓÐ____Ìõ±ß£¬ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòÍêȫͼÖУ¬°üº¬ÓÐ____Ìõ±ß¡£ 72.ÒÑÖªÒ»¸öÁ¬Í¨Í¼µÄ±ß¼¯Îª{£¨1£¬2£©£¬£¨1£¬3£©£¬£¨1£¬4£©£¬£¨2£¬3£©£¬£¨2£¬5£©£¬£¨3£¬5£©£¬£¨4£¬5£©}£¬Ôò¶ÈΪ3µÄ¶¥µãµÄ¸öÊýÓУߣ߸ö¡£ 73.¼Ù¶¨Ò»¸öÓÐÏòͼµÄ¶¥µãµÄ¼¯Îª{a,b,c,d,e,f},±ß¼¯{£¬£¬ 74.ÔÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄÎÞÏòͼÖУ¬ÒªÁ¬Í¨ËùÓж¥µãÔòÖÁÉÙÐèÒª£ß£ßÌõ±ß¡£ 75.±íʾͼµÄÁ½ÖÖ´æ´¢½á¹¹Îª£ß£ßºÍ£ß£ß¡£ 76.ÔÚÒ»¸öÁ¬Í¨Í¼ÖдæÔÚ×ţߣ߸öÁ¬Í¨·ÖÁ¿¡£ 77.ÈôÒ»¸öͼµÄ¶¥µã¼¯Îª{a,b,c,d,e,f},±ß¼¯Îª{£¨a,b£©£¬£¨a,c£©£¬£¨b,c£©£¬£¨d,e£©}£¬Ôò¸Ãͼº¬ÓУߣ߸öÁ¬Í¨·ÖÁ¿¡£ 78.ÈôÒ»¸öͼµÄ±ß¼¯Îª{<0,1>£¬<0,2>£¬<0,3>£¬<0,4>£¬<1,2>£¬<2,4>£¬<3,4>}£¬Ôò´Ó¶¥µãV0µ½¶¥µãV4¹²ÓУߣßÌõ¼òµ¥Â·¾¶¡£ 79.Èçͼ1.10ËùʾΪһ¸ö´øÈ¨ÓÐÏòͼ£¬´Ó¶¥µãV0µ½¶¥µãV4µÄ×î¶Ì·¾¶³¤¶ÈΪ£ß£ß¡£ 80.¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãµÄͼ£¬Èô²ÉÓÃÁÚ½Ó¾ØÕó±íʾ£¬Ôò¾ØÕó´óСÖÁÉÙΪ£ß£ß¡Á£ß£ß¡£ 81.¶ÔÓÚÒ»¸ö¾ßÓÐn¸ö¶¥µãºÍeÌõ±ßµÄÓÐÏòͼºÍÎÞÏòͼ£¬ÔÚÆä¶ÔÓ¦µÄÁÚ½Ó±íÖУ¬Ëùº¬±ß½áµãµÄ¸öÊý·Ö±ðΪ£ß£ßºÍ£ß£ß¡£ 82.ÔÚÓÐÏòͼµÄÁÚ½Ó±íºÍÄæÁÚ½Ó±í±íʾÖУ¬Ã¿¸ö¶¥µãÁÚ½Ó±í·Ö±ðÁ´½Óןö¥µãµÄËùÓУߣߺͣߣߡ£ 83.ÓÐÒ»¸öͼµÄ±ß¼¯Îª{£¨a,c£©£¬£¨a,e£©£¬£¨b,e£©£¬£¨c,d£©£¬£¨d,e£©}£¬´Ó¶¥µãa³ö·¢½øÐÐÉî¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ£ß£ß£ß£ß£¬´Ó¶¥µãa³ö·¢½øÐйã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ£ß£ß£ß£ß¡£ 84.Ò»¸öͼµÄ±ß¼¯Îª{£¨a,c£©£¬£¨a,e£©£¬£¨c,f£©£¬£¨d,c£©£¬£¨e,b£©£¬£¨e,d£©},´Ó¶¥µãa³ö·¢³ö·¢½øÐÐÉî ¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ£ß£ß£ß£ß£¬´Ó¶¥µãa³ö·¢½øÐйã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁÐΪ£ß£ß£ß£ß¡£ 85.ͼµÄ£ß£ßÓÅÏÈËÑË÷±éÀúËã·¨ÊÇÒ»ÖֵݹéËã·¨£¬Í¼µÄ£ß£ßÓÅÏÈËÑË÷±éÀúËã·¨ÐèҪʹÓöÓÁС£ 86.ÈôÒ»¸öÁ¬Í¨Í¼ÖÐÿ¸ö±ßÉϵÄȨֵ¾ù²»Í¬£¬ÔòµÃµ½µÄ×îСÉú³ÉÊ÷Êǣߣߣ¨Î¨Ò»/²»Î¨Ò»£©¡£ 87.ÒÔ˳Ðò²éÕÒ·½·¨´Ó³¤¶ÈΪnµÄ˳Ðò±í»òµ¥Á´±íÖвéÕÒÒ»¸öÔªËØÊ±£¬Æ½¾ù²éÕÒ³¤¶ÈΪ£ß£ß¡£ 88.¶Ô³¤¶ÈΪnµÄ²éÕÒ±í½øÐвéÕÒʱ£¬¼Ù¶¨²éÕÒµÚi¸öÔªËØµÄ¸ÅÂÊΪP£¬²éÕÒ³¤¶È£¨¼´ÔÚ²éÕÒ¹ý³ÌÖÐÒÀ´ÎͬÓйØÔªËرȽϵÄ×Ü´ÎÊý£©ÎªC£¬ÔòÔÚ²éÕҳɹ¦µÄÇé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶ÈµÄ¼ÆË㹫ʽΪ£ß£ß£ß£ß¡£ 89.¼Ù¶¨Ò»¸ö˳Ðò±íµÄ³¤¶ÈΪ40£¬²¢¼Ù¶¨²éÕÒÿ¸öÔªËØµÄ¸ÅÂʶ¼Ïàͬ£¬ÔòÔÚ²éÕҳɹ¦µÄÇé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶È£ß£ß£¬ÔòÔÚ²éÕÒ²»³É¹¦µÄÇé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶È£ß£ß¡£ 90.ÒÔÕÛ°ë²éÕÒ·½·¨´Ó³¤¶ÈΪnµÄÓÐÐò±íÖвéÕÒÒ»¸öÔªËØÊ±£¬Æ½¾ù²éÕÒ³¤¶ÈÔ¼µÈÓڣߣ߼õÒ»¡£ 91.ÒÔÕÛ°ë²éÕÒ·½·¨´Ó³¤¶ÈΪ50µÄÓÐÐò±íÖвéÕÒÒ»¸öÔªËØÊ±£¬Æä²éÕÒ³¤¶È²»³¬¹ý£ß£ß¡£ 92.´ÓÓÐÐò±í£¨12£¬18£¬30£¬43£¬56£¬78£¬82£¬95£©ÖзֱðÕÛ°ë²éÕÒ43ºÍ56ÔªËØÊ±£¬Æä²éÕÒ³¤¶È·Ö±ðΪ£ß£ßºÍ£ß£ß¡£ 93.¼Ù¶¨¶Ô³¤¶Èn=50µÄÓÐÐò±í½øÐÐÕÛ°ë²éÕÒ£¬Ôò¶ÔÓ¦µÄÅж¨Ê÷Éî¶ÈΪ£ß£ß£¬×îºóÒ»²ãµÄ½áµãÊýΪ£ß£ß¡£ 94.ÔÚ·Ö¿é²éÕÒÖУ¬¼Ù¶¨²éÕÒ±í£¨¼´Ö÷±í£©µÄ³¤¶ÈΪ96£¬±»µÈ·ÖΪ8¸ö×Ó±í£¬Ôò½øÐзֿé²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ£ß£ß¡£ 95.¼Ù¶¨¶Ô³¤¶ÈΪnµÄÓÐÐò±í½øÐзֿé²éÕÒ£¬²¢¼Ù¶¨Ã¿¸ö×Ó±íµÄ³¤¶ÈΪ£¬Ôò½øÐзֿé²éÕ񵀮½¾ù²éÕÒ³¤¶ÈΪ£ß£ß¡£ 96.ÔÚÒ»¿Ã¶þ²æÊ÷ÅÅÐòÖУ¬Ã¿¸ö·ÖÖ§½áµãµÄ×ó×ÓÊ÷ÉÏËùÓнáµãµÄÖµÒ»¶¨£ß£ß¸Ã½áµãµÄÖµ£¬ÓÒ×ÓÊ÷ÉÏËùÓнáµãµÄÖµÒ»¶¨£ß£ß¸Ã½áµãµÄÖµ¡£ 97.´ÓÒ»¿Ã¶þ²æÅÅÐòÊ÷ÖвéÕÒij¸öÔªËØÊ±£¬ÈôÔªËØµÄÖµµÈÓÚ¸ù½áµãµÄÖµ£¬Ôò±íÃ÷£ß£ß£¬ÈôÔªËØµÄֵСÓÚ¸ù½áµãµÄÖµ£¬Ôò¼ÌÐøÏò£ß£ß²éÕÒ£¬ÈôÔªËØµÄÖµ´óÓÚ¸ù½áµãµÄÖµ£¬Ôò¼ÌÐøÏò£ß£ß²éÕÒ¡£ 98.ÏòÒ»¿Ã¶þ²æÅÅÐòÊ÷ÖÖ²åÈëÒ»¸öÔªËØÊ±£¬ÈôÔªËØµÄֵСÓÚ¸ù½áµãµÄÖµ£¬Ôò½Ó×ÅÏò¸ù½áµãµÄ£ß£ß²åÈ룬ÈôÔªËØµÄÖµ´óÓÚ¸ù½áµãµÄÖµ£¬Ôò½Ó×ÅÏò¸ù½áµãµÄ£ß£ß²åÈë¡£ 99.ÔÚÒ»¿Ãƽºâ¶þ²æÅÅÐòÊ÷ÖУ¬Ã¿¸ö½áµãµÄ×ó×ÓÊ÷Éî¶ÈÓëÓÒ×ÓÊ÷Éî¶ÈÖ®²îµÄ¾ø¶ÔÖµ²»³¬¹ý£ß£ß¡£ 100.¼Ù¶¨¶ÔÏßÐÔ±í£¨38£¬25£¬74£¬52£¬48£©£¬½øÐÐÉ¢Áд洢£¬²ÉÓÃH£¨K£©=K%7×÷Ϊ¹þÏ£º¯Êý£¬²ÉÓÃÏßÐÔ̽²âÔÙÉ¢Áз¨´¦Àí³åÍ»£¬ÔòÔÚ½¨Á¢¹þÏ£±í¹ý³ÌÖУ¬½«»áÅöµ½£ß£ß´Î³åÍ»¡£ 101.¼Ù¶¨¶ÔÏßÐÔ±í£¨38£¬25£¬74£¬52£¬48£©½øÐÐÉ¢Áд洢£¬²ÉÓÃH£¨K£©=K%7×÷Ϊ¹þÏ£º¯Êý£¬²ÉÓÃÏßÐÔ̽²âÔÙÉ¢Áз¨´¦Àí³åÍ»£¬Ôòƽ¾ù²éÕÒ³¤¶ÈΪ£ß£ß¡£ 102.ÔÚÏßÐÔ±íµÄÉ¢Áд洢ÖУ¬×°ÌîÒò×ÓaÓÖ³Æ×°ÌîϵÊý£¬ÈôÓÃm±íʾɢÁбíµÄ³¤¶È£¬n±íʾɢÁд洢µÄÔªËØ¸öÊý£¬ÔòaµÈÓڣߣߡ£ 103.¶ÔÏßÐÔ±í£¨18£¬25£¬63£¬50£¬42£¬32£¬90£©½øÐÐÉ¢Áд洢ʱ£¬ÈôÑ¡ÓÃH£¨K£©=K%9×÷Ϊ¹þÏ£º¯Êý£¬ÔòÉ¢ÁеØÖ·Îª0µÄÔªËØÓУߣ߸ö£¬ÔòÉ¢ÁеØÖ·Îª5µÄÔªËØÓУߣ߸ö¡£ 104.ÿ´Î´ÓÎÞÐò×Ó±íÖÐÈ¡³öÒ»¸öÔªËØ£¬°ÑËü²åÈëµ½ÓÐÐò×Ó±íµÄÊʵ±Î»Ö㬴ËÖÖÅÅÐò·½·¨½Ð×ö£ß£ßÅÅÐò£»Ã¿´Î´ÓÎÞÐò×Ó±íÖÐÌôÑ¡³öÒ»¸ö×îС»ò×î´óÔªËØ£¬°ÑËü½»»»µ½ÓÐÐò±íµÄÒ»¶Î£¬´ËÖÖÅÅÐò·½·¨½Ð×ö£ß£ßÅÅÐò¡£ 105.Èô¶ÔÒ»×é¼Ç¼£¨46£¬79£¬56£¬38£¬40£¬80£¬35£¬50£¬74£©½øÐÐÖ±½Ó²åÈëÅÅÐò£¬µ±°ÑµÚ8¸ö¼Ç¼²åÈëµ½Ç°ÃæÒÑÅÅÐòµÄÓÐÐò±íʱ£¬ÎªÑ°ÕÒ²åÈëλÖÃÐè±È½Ï£ß£ß´Î¡£ 106.£ß£ßÅÅÐò·½·¨Äܹ»Ã¿´ÎʹÎÞÐò±íÖеĵÚÒ»¸ö¼Ç¼²åÈëµ½ÓÐÐò±íÖС£ 107.¶Ôn¸ö¼Ç¼½øÐÐðÅÝÅÅÐòʱ£¬×îÉٵıȽϴÎÊýΪ£ß£ß£¬×îÉÙµÄÌËÊýΪ£ß£ß¡£ 108.¼Ù¶¨Ò»×é¼Ç¼Ϊ£¨46£¬79£¬56£¬38£¬40£¬84£©£¬ÔÚðÅÝÅÅÐò¹ý³ÌÖнøÐеÚÒ»ÌËÅÅÐòºóµÄ½á¹ûΪ£ß£ß¡£ 109.¼Ù¶¨Ò»×é¼Ç¼Ϊ£¨46£¬79£¬56£¬64£¬38£¬40£¬84£¬43£©£¬ÔÚðÅÝÅÅÐò¹ý³ÌÖнøÐеÚÒ»ÌËÅÅÐòʱ£¬ÔªËØ97½«×îÖÕϳÁµ½ÆäºóµÚ£ß£ßλÖᣠ110.£ß£ßÅÅÐò·½·¨Ê¹¼üÖµ´ïµÄ¼Ç¼Öð½¥Ï³Á£¬Ê¹¼üֵСµÄ¼Ç¼Öð½¥Éϸ¡¡£ 111.¼Ù¶¨Ò»×é¼Ç¼Ϊ£¨46£¬79£¬56£¬38£¬40£¬80£©¶ÔÆä½øÐпìËÙÅÅÐòµÄ¹ý³ÌÖУ¬¹²ÐèÒª£ß£ßÌË¡£ 112.¼Ù¶¨Ò»×é¼Ç¼Ϊ£¨46£¬79£¬56£¬25£¬76£¬38£¬40£¬80£©¶ÔÆä½øÐпìËÙÅÅÐòµÄµÚÒ»´Î»®·Öºó£¬ÓÒÇø¼äÄÚÔªËØ¸öÊýΪ£ß£ß¡£ 113.¼Ù¶¨Ò»×é¼Ç¼Ϊ£¨46£¬79£¬56£¬38£¬40£¬80£©£¬¶ÔÆä½øÐпìËÙÅÅÐòµÄµÚÒ»´Î»®·ÖºóµÄ½á¹ûΪ£ß£ß¡£ 114.ÔÚËùÓÐÅÅÐò·½·¨ÖУ¬£ß£ßÅÅÐò·½·¨²ÉÓõÄÊÇÕÛ°ë²éÕÒ·¨µÄ˼Ïë¡£ 115.ÔÚ¼òµ¥Ñ¡ÔñÅÅÐòÖУ¬¼Ç¼±È½Ï´ÎÊýµÄʱ¼ä¸´ÔÓ¶ÈΪ£ß£ß£¬¼ÇÂ¼ÒÆ¶¯´ÎÊýµÄʱ¼ä¸´ÔÓ¶ÈΪ£ß£ß¡£ 116.Èô¶ÔÒ»×é¼Ç¼£¨46£¬79£¬56£¬38£¬40£¬80£¬35£¬50£¬74£©½øÐмòµ¥Ñ¡ÔñÅÅÐò£¬ÓÃk±íʾ×îÐ¡ÖµÔªËØµÄϱ꣬½øÐеÚÒ»ÌËÊǿɵóõֵΪ1£¬ÔòÔÚµÚÒ»ÌËÑ¡Ôñ×îСֵµÄ¹ý³ÌÖУ¬kµÄÖµ±»Ð޸ģߣߴΡ£ 117.ÔÚʱ¼ä¸´ÔÓ¶ÈΪO£¨n2£©µÄËùÓÐÅÅÐò·½·¨ÖУ¬£ß£ßÅÅÐò·½·¨Ê¹²»Îȶ¨µÄ¡£ 118.¼Ù¶¨Ò»¸ö¶ÑΪ£¨38£¬40£¬56£¬79£¬46£¬84£©£¬ÔòÀûÓöÑÅÅÐò·½·¨½øÐеÚÒ»Ì˽»»»ºÍ¶Ô¸ù½áµãɸÔËËãºóµÃµ½µÄ½á¹ûΪ£ß£ß¡£ 119.ÔÚËùÓÐÅÅÐò·½·¨ÖУ¬£ß£ß·½·¨Ê¹Êý¾ÝµÄ×éÖ¯²ÉÓõÄÊÇÍêÈ«¶þ²æÊ÷µÄ½á¹¹¡£ 120.£ß£ßÅÅÐò·½·¨Äܹ»Ã¿´Î´ÓÎÞÐò±íÖвéÕÒ³öÒ»¸ö×îСֵ¡£ Èý¡¢Ãû´Ê½âÊÍ 1.Êý¾Ý 2.Êý¾ÝÔªËØ 3.Êý¾Ý¶ÔÏó 4.Êý¾Ý½á¹¹ 5.Âß¼½á¹¹ 6.ʱ¼ä¸´ÔÓ¶È 7.¿Õ¼ä¸´ÔÓ¶È 8.Õ» 9.¶ÓÁÐ 10.ѹËõ´æ´¢ 11.Ê÷Ðνṹ 12.½áµãµÄ¶È 13.Ê÷µÄ¶È 14.Ê÷µÄÉî¶È 15.ÓÐÐòÊ÷ 16.±éÀú 17.¹þ·òÂüÊ÷ 18.ÁÚ½Ó¹ØÏµ 19.·¾¶ 20.Á¬Í¨Í¼ 21.Ç¿Á¬Í¨Í¼ 22.ÍêÈ«ÎÞÏòͼ 23.ÍêÈ«ÓÐÏòͼ 24.Ö÷¹Ø¼ü×Ö ËÄ¡¢¼ò´ðÌâ 1.¼òÊöÏßÐԽṹ£¬Ê÷Ðνṹ£¬Íø×´½á¹¹µÄ²»Í¬¡£ 2.¼òÊöËã·¨¸´ÔÓ¶ÈµÄÆÀ¼Û·½·¨¡£ 3.ÉèÓÐÁ½¸öËã·¨ÔÚͬһ̨»úÆ÷ÉÏÔËÐУ¬ÆäÖ´ÐÐʱ¼ä·Ö±ðΪ100n2ºÍ2n,ҪʹǰÕß¿ìÓÚºóÕߣ¬nÖÁÉÙΪ¶à´ó£¿ 4.ÔÚ˳Ðò±íÖвåÈëºÍɾ³ýÒ»¸ö½áµãÐèÆ½¾ùÒÆ¶¯¶àÉÙ¸ö½áµã£¬¾ßÌåÒÆ¶¯µÄ´ÎÊýÈ¡¾öÓÚÄÄЩÒòËØ£¿ 5.¼òÊö¶¨Ò壺ÏßÐÔ±í¡¢µ¥Á´±í¡¢ÏßÐÔ±íµÄ´æ´¢·½Ê½¡¢Ñ»·Á´±í¡¢Ë«ÏòÁ´±í¡£ 6.ÔÚµ¥Á´±í£¬Ë«ÏòÁ´±íºÍµ¥Ñ»·Á´±íÖУ¬Èô½öÖªµÀÖ¸ÕëpÖ¸Ïòij½áµã£¬²»ÖªµÀÍ·Ö¸Õ룬ÄÜ·ñ½«p´ÓÏàÓ¦µÄÁ´±íÖÐɾȥ£¿Èô¿ÉÒÔ£¬Æäʱ¼ä¸´ÔÓ¶È·Ö±ðΪ¶àÉÙ£¿ 7.ÓÐÄÄЩÁ´±í¿É½öÓÐÒ»¸öβָÕëÀ´Î¨Ò»È·¶¨£¬¼´´ÓβָÕë³ö·¢ÄÜ·ÃÎʵ½Á´±íÉÏÈκÎÒ»¸ö½áµã£¿ 8.ºÎʱѡÓÃ˳Ðò±í£¬ºÎʱѡÓÃÁ´±í×÷ΪÏßÐÔ±íµÄ´æ´¢½á¹¹£¿ 9.¼òÊöÕ»Óë¶ÓÁеIJ»Í¬Ö®´¦¡£ 10.É轫ÕûÊý1£¬2£¬3£¬4ÒÀ´Î½øÕ»£¬µ«Ö»Òª³öջʱջ·Ç¿Õ£¬Ôò¿É½«³öÕ»²Ù×÷°´ÈκδÎÐòѹÈëÆäÖУ¬Çë»Ø´ðÏÂÊöÎÊÌ⣺ ÈôÈë¡¢³öÕ»´ÎÐòΪPush(1),Pop(),Push(2),Push(3), Pop(),Pop(),Push(4),Pop(),Ôò³öÕ»µÄÊý×ÖÐòÁÐÈçºÎ£¿ ÄÜ·ñµÃµ½³öÕ»ÐòÁÐ1423ºÍ1432£¬²¢ËµÃ÷Ϊʲô²»Äܵõ½»òÕßÈçºÎµÃµ½¡£ Çë·ÖÎö1£¬2£¬3£¬4µÄ¸÷ÖÖÅÅÁÐÖУ¬ÄÄЩÐòÁÐÊÇ¿ÉÒÔͨ¹ýÏàÓ¦µÄÈë,³öÕ»²Ù×÷µÃµ½µÄ¡£ 11.¾ÙÀý˵Ã÷Õ»µÄ¡°ÉÏÒ硱ºÍ¡°ÏÂÒ硱ÏÖÏó¡£ 12.Ñ»·¶ÓÁеÄÓŵãÊÇʲô£¿ÈçºÎÅбðËüµÄ¿ÕºÍÂú£¿ 13.¼Ù¶¨ÓÃһάÊý×éa[7]˳Ðò´æ´¢Ò»¸öÑ»·¶ÓÁУ¬¶ÓÊ׺ͶÓβָÕë·Ö±ðÓÃfrontºÍrear±íʾ£¬µ±Ç°¶ÓÁÐÖÐÓÐ5¸öÔªËØ£º23£¬45£¬67£¬80£¬34£¬ÆäÖÐ23Ϊ¶ÓÊ×ÔªËØ£¬frontµÄֵΪ3£¬Ç뻳ö¶ÔÓ¦µÄ´æ´¢×´Ì¬£¬µ±Á¬Ðø½øÐÐ4´Î³ö¶ÓÔËËãºó£¬ÔÙÈÃ15£¬36£¬48ÔªËØÒÀ´Î½ø¶Ó£¬ÇëÔٴλ³ö¶ÔÓ¦µÄ´æ´¢×´Ì¬¡£ 14.¿Õ´®ºÍ¿Õ¸ñ´®ÓкÎÇø±ð£¿×Ö·û´®Öпոñ·ûÓкÎÒâÒ壿¿Õ´®ÔÚ´®µÄ´¦ÀíÖÐÓкÎ×÷Óã¿ 15.Á½¸ö×Ö·û´®ÏàµÈµÄ³äÒªÌõ¼þÊÇʲô£¿ 16.¶þ²æÊ÷ºÍÊ÷Ö®¼äÓкÎÇø±ð£¿Ò»¿Ã¶ÈΪ2µÄÊ÷Óë¶þ²æÊ÷ÓкÎÇø±ð£¿ 17.ÔÚÒ»¿Ã¶þ²æÊ÷Èçͼ1.11Ëùʾ¡£Ð´³ö¶Ô´ËÊ÷½øÐÐÏÈÐò£¬ÖÐÐò£¬ºóÐò±éÀúʱµÃµ½µÄ½áµãÐòÁС£ 18.ÒÑÖªÒ»¿Ã¶þ²æÊ÷µÄÖÐÐò±éÀúÐòÁÐΪCDBAEGF,ÏÈÐò±éÀúÐòÁÐΪABCDEFG,ÊÔÎÊÄܲ»ÄÜΨһȷ¶¨Ò»¿Ã¶þ²æÊ÷£¿ÈôÄÜ£¬»³ö¸Ã¶þ²æÊ÷¡£Èô¸ø¶¨ÏÈÐò±éÀúÐòÁкͺóÐò±éÀúÐòÁУ¬ÄÜ·ñΨһȷ¶¨£¿ 19.½«Í¼1.12ËùʾµÄÊ÷ת»»³É¶þ²æÊ÷¡£ 20.Ò»¿Ã¶ÈΪ2µÄÓÐÐòÊ÷ÓëÒ»¿Ã¶þ²æÊ÷ÓкÎÇø±ð£¿ 21.ÊÔ·Ö±ð»³ö¾ßÓÐ3¸ö½áµãµÄÊ÷ºÍ3¸ö½áµãµÄ¶þ²æÊ÷µÄËùÓв»Í¬ÐÎ̬¡£ 22.¸ß¶ÈΪhµÄÍêÈ«¶þ²æÊ÷ÖÁÉÙÓжàÉÙ¸ö½áµã£¿ÖÁ¶àÓжàÉÙ¸ö½áµã£¿ 23.ÊÔ²ÉÓÃ˳Ðò´æ´¢·½·¨ºÍÁ´Ê½´æ´¢·½·¨·Ö±ð»³öÈçͼ1.13Ëùʾ¸÷¶þ²æÊ÷µÄ´æ´¢½á¹¹¡£ 24.¼Ù¶¨ÓÃÓÚͨÐŵĵçÎÄÓÉ8¸ö×Öĸ×é³É£¬·Ö±ðÊÇA£¬B£¬C£¬D£¬E£¬F£¬G£¬ºÍH£¬¸÷×ÖĸÔÚµçÎÄÖгöÏֵĸÅÂÊΪ£º5%£¬25%£¬4%£¬7%£¬9%£¬12%£¬30%£¬8%£¬ÊÔΪ8¸ö×ÖĸÉè¼Æ¹þ·òÂü±àÂë¡£ 25.¸ù¾ÝÈçͼ1.14ËùʾµÄ´øÈ¨ÓÐÏòͼG£¬ÊԻشðÏÂÃæÎÊÌ⣺ £¨1£©¸ø³ö´Ó½áµãV1³ö·¢°´Éî¶ÈÓÅÏÈËÑË÷±éÀúGËùµÃµÄ½áµãÐòÁУ¬²¢¸ø³ö°´¹ã¶ÈÓÅÏÈËÑË÷±éÀúGËùµÃµÄ½áµãÐòÁС£ £¨2£©¸ø³ö´Ó½áµãV1µ½½áµãV8µÄ×î¶Ì·¾¶¡£ 26.¶ÔÓÚÈçͼ1.15ËùʾµÄÓÐÏòͼ£¬Çë¸ø³ö £¨1£©¶ÔÓ¦µÄÁÚ½Ó¾ØÕ󣬲¢¸ø³öA£¬B£¬CÈý¸ö¶¥µãµÄ³ö¶ÈÓëÈë¶È¡£ £¨2£©ÁÚ½Ó±í±íʾºÍÄæÁÚ½Ó±í±íʾ¡£ £¨3£©Ç¿Á¬Í¨·ÖÁ¿¡£ 27.¼ÙÉèͼµÄ¶¥µãÊÇA£¬B£¬C£¬D£¬?Çë¸ù¾ÝÏÂÊöÁÚ½Ó¾ØÕó»³öÏàÓ¦µÄÓÐÏòͼºÍÎÞÏòͼ¡£ £¨1£©0 1 1 1 £¨2£© 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 28.¶Ôn¸ö¶¥µãµÄÎÞÏòͼºÍÓÐÏòͼ£¬²ÉÓÃÁÚ½Ó¾ØÕóºÍÁÚ½Ó±í±íʾʱ£¬ÈçºÎÅбðÏÂÁÐÓйØÎÊÌ⣺ £¨1£©Í¼ÖÐÓжàÉÙÌõ±ß£¿ £¨2£©ÈÎÒâÁ½¸ö¶¥µãiºÍjÊÇ·ñÓбßÏàÁ¬£¿ £¨3£©ÈÎÒâÒ»¸ö¶¥µãµÄ¶ÈÊǶàÉÙ£¿ 29.ÊÔÊö˳Ðò²éÕÒ·¨£¬ÕÛ°ë²éÕÒ·¨ºÍ·Ö¿é²éÕÒ·¨¶Ô²éÕÒ±íÖÐÔªËØµÄÒªÇó¡£ 30.ÈôÓÐÒ»¸ö³¤¶ÈΪnµÄ±í£¬Æä²éÕҸñíÖÐÿ¸öÔªËØµÄ¸ÅÂÊÏàͬ£¬²ÉÓÃ˳Ðò²éÕÒ¡¢ÕÛ°ë²éÕҺͷֿé²éÕÒ3ÖÖ²éÕÒ·½·¨½øÐвéÕÒʱµÄÆäƽ¾ù²éÕÒ³¤¶È¸÷Ϊ¶àÉÙ£¿ 31.ÉèÓÐÒ»×鹨¼ü×Ö£¨17£¬13£¬14£¬153£¬29£¬35£©Ðè²åÈëµ½±í³¤Îª12µÄÉ¢ÁбíÖУ¬Çë»Ø´ðÏÂÁÐÎÊÌ⣺ £¨1£©Éè¼ÆÒ»¸öÊʺϸÃÉ¢ÁбíµÄ¹þÏ£º¯Êý¡£ £¨2£©ÓÃÉè¼ÆµÄ¹þÏ£º¯Êý½«ÉÏÊö¹Ø¼ü×Ö²åÈ뵽ɢÁбíÖУ¬»³öÆä½á¹¹£¬²¢Ö¸³öÓÃÏßÐÔ̽²âÔÙÉ¢Áз¨½â¾ö³åͻʱ¹¹ÔìÉ¢ÁбíµÄ×°ÌîÒò×ÓΪ¶àÉÙ£¿ 32.Ñ¡ÔñÅÅÐòËã·¨ÊÇ·ñÎȶ¨£¿ÎªÊ²Ã´£¿ 33.¸ø³öÒ»×鹨¼ü×Ö£¨19£¬01£¬26£¬92£¬87£¬11£¬43£¬87£¬21£©£¬½øÐÐðÅÝÅÅÐò£¬Áгöÿһ±éÅÅÐòºó¹Ø¼ü×ÖµÄÅÅÁдÎÐò£¬²¢Í³¼ÆÃ¿±éÅÅÐò½øÐеĹؼü×ֱȽϴÎÊý¡£ 34.Ö±½Ó²åÈëÅÅÐòËã·¨ÊÇ·ñÎȶ¨£¿ÎªÊ²Ã´£¿ 35.¶ÑÅÅÐòΪʲôÊDz»Îȶ¨µÄÅÅÐò£¿ÊÔ¾ÙÀý˵Ã÷¡£ Îå¡¢Ó¦ÓÃÌâ 1.Ö¸³öÏÂÁÐÿ¸öËã·¨µÄ¹¦Äܲ¢Çó³öÆäʱ¼ä¸´ÔÓÐÔ¡£ £¨1£©int sum1£¨int n£© { int p=1,s=0; for(int i=1£»i<=n;i++) { p*=i; s+=p£» } return s; } (2) void mtable£¨int n£© {for£¨int i=1£»i<=n;i++£© for£¨int j=i£»j<=n;j++£© printf£¨¡°i*j=%d ¡±£¬i*j£©£» printf£¨¡°\\n¡±£©; } (3)void cmatrix(int a[M][N],int d) /*MºÍNΪȫ¾ÖÕûÐͳ£Á¿*/ { for£¨int i=0£»i } 2. void AA(sqlist &L)/*LΪһ¸ö˳Ðò±í*/ {initiate_sqlist(L);/*³õʼ»¯Ë³Ðò±íL*/ end_insert(L,30);/*°ÑÈýÊ®¸öÔªËØ²åÈëµ½±íβ*/ begin_insert£¨L£¬50£©/*°ÑÎåÊ®¸öÔªËØ²åÈëµ½±íÍ·*/ int a[4]={5,8,12,15}; int i; for(i=0;i<=4;i++) end_insert(L,a[i]);/*ÒÀ´Î°Ñÿ¸öÔªËØ²åÈëµ½±íβ*/ for(i=0;i<=4;i++) begin_insert(L,a[i]);/*ÒÀ´Î°Ñÿ¸öÔªËØ²åÈëµ½±íÍ·*/ } ¸ÃËã·¨±»µ÷ÓÃÖ´Ðк󣬵õ½µÄ˳Ðò±íLΪ£º£ß£ß¡£ 3. viod AC£¨lklist &HL£©/*HLΪһ¸öµ¥Á´±í*/ {initiate_lklist£¨HL£©£»/*³õʼ»¯µ¥Á´±íHL*/ insert_lklist(HL,30,1);/*Ïòµ¥Á´±íµÚÒ»¸öλÖòåÈëÔªËØ30*/ insert_lklist(HL,50,2);/*Ïòµ¥Á´±íµÚ¶þ¸öλÖòåÈëÔªËØ50*/ int a[5]={15£¬8£¬9£¬26£¬12}£» for£¨inti=0£»i<5;i++£©begin_insert(HL,a[i]); /*ÏòHLµÄ±íÍ·ÒÀ´Î²åÈëÊý×éaÖеÄǰÎå¸öÔªËØÖµ*/ int x=delete_lklist£¨HL£¬3£©£» /*´Ëº¯Êýɾ³ýHLÖеĵÚÈý¸ö½áµã²¢·µ»Ø¸Ã½áµãµÄÖµ*/ end_lklist£¨HL£¬x£©£»/*ÏòHLµÄ±íβ²åÈëx*/ } ¸ÃËã·¨±»µ÷ÓÃÖ´Ðк󣬵õ½µÄHLµ¥Á´±íËù¶ÔÓ¦µÄÏßÐÔ±íΪ£º£ß£ß£ß£ß¡£ 4.·Ö±ð±àдÔÚ˳Ðò±íºÍ´øÍ·½áµãµÄµ¥Á´±íÉÏͳ¼Æ³öֵΪxµÄÔªËØ¸öÊýµÄËã·¨£¬Í³¼Æ½á¹ûÓɺ¯ÊýÖµ·µ»Ø¡£ 5.·Ö±ð±àдÔÚ˳Ðò±íºÍ´øÍ·½áµãµÄµ¥Á´±íÉÏɾ³ýÆäÖµµÈÓÚxµÄËùÓÐÔªËØ¡£ 6.·Ö±ð±àдÔÚ˳Ðò±íºÍµ¥Á´±íÉÏɾ³ý¾ßÓÐÖØ¸´ÖµµÄ¶àÓà½áµã£¬Ê¹Ã¿¸ö½áµãµÄÖµ¾ù²»Í¬¡£È罫ÏßÐÔ±í£¨2£¬8£¬9£¬2£¬5£¬5£¬6£¬8£¬7£¬2£©±äΪ£¨2£¬8£¬9£¬5£¬7£©¡£ 7.ÓÐ6¸öÔªËØA£¬B£¬C£¬D£¬E£¬FÒÀ´ÎÈëÕ»£¬ÔÊÐíÈκÎʱºò³öÕ»£¬ÄÜ·ñµÃµ½ÏÂÁеĸ÷¸ö³öÕ»ÐòÁУ¬ÈôÄÜ£¬¸ø³ö³öÕ»²Ù×÷µÄ¹ý³Ì£¬Èô²»ÄÜ£¬¼òÊöÆäÀíÓÉ¡£ £¨1£©CDBEFA£¨2£©ABEDFC£¨3£©DCEABF£¨4£©BAEFCD 8.Éè¼ÆÒ»¸öµÝ¹éËã·¨£¬¼ÆËã³ö·µ»Ø1ÖÁnÖ®¼äµÄËùÓÐÕûÊýƽ·½ºÍ¡£ 9.ì³²¨ÄÇÆõ£¨Fibonacci£©ÊýÁе͍ÒåΪ£ºËüµÄµÚÒ»ÏîºÍµÚ¶þÏî¾ùΪ1£¬ÒÔºó¸÷ÏîΪǰÁ½ÏîÖ®ºÍ¡£Èôì³²¨ÄÇÆõÊýÁÐÖеÚnÏîÓÃFib(n)±íʾ£¬Ôò¼ÆË㹫ʽΪ£º ÊÔ±àд³ö¼ÆËãFib(n)µÄµÝ¹éËã·¨ºÍ·ÇµÝ¹éËã·¨¡£ 10.¼Ù¶¨ÔÚÒ»¸öÁ´Ê½¶ÓÁÐÖÐÖ»ÉèÖöÓβָÕ룬²»ÉèÖöÓÊ×Ö¸Õ룬²¢ÇÒÈöÓβ½áµãµÄÖ¸ÕëÓòÖ¸Ïò¶ÓÊ×½áµã£¨³Æ´ËΪѻ·¶ÓÁУ©£¬ÊÔ·Ö±ðд³öÔÚÑ»·¶ÓÁÐÉϽøÐвåÈëºÍɾ³ý²Ù×÷µÄËã·¨¡£ 11.ÉèÒÔ¶þ²æÁ´±íΪ¶þ²æÊ÷µÄ´æ´¢½á¹¹£¬½áµãµÄ½á¹¹ÈçÏ£º ÆäÖÐdataΪÕûÊý£¬ÊÔÉè¼ÆÒ»¸öËã·¨void change(bitreptrr),Èô½áµã×óº¢×ÓdataµÄÖµ´óÓÚÓÒº¢×ÓµÄdataÓòµÄÖµ£¬Ôò½»»»Æä×óÓÒ×ÓÊ÷¡£ 12.Éè¼ÆÒ»¸öËã·¨£¬Í³¼Æ³ö¶þ²æÊ÷ÖеÈÓÚ¸ø¶¨ÖµxµÄ½áµã¸öÊý£¬¸Ãͳ¼ÆÖµÓɱäÁ¿k´ø»Ø£¨kµÄ³õֵΪ0£©¡£ Void countl£¨bitreptrr£¬datatype x,int &k£© 13.Éè¼ÆÒ»¸öËã·¨£¬´ÓÒ»¿Ã¶þ²æÊ÷²éÕÒ³öËùÓнáµãµÄ×î´óÖµ²¢·µ»Ø¡£ Datatype maximum(bitreptrr) 14.¼ÙÉèÓÃÓÚͨÐŵĵçÎÄÓÐ8¸ö×Öĸ×é³É£¬×ÖĸÔÚµçÎÄÖгöÏֵįµÂÊ·Ö±ðΪ£º7£¬19£¬2£¬6£¬32£¬3£¬21£¬10¡£ÊÔΪÕâ8¸ö×ÖĸÉè¼Æ¹þ·òÂü±àÂë¡£ 15.ÒÑÖªÒ»¸öÎÞÏòͼµÄÁÚ½Ó¾ØÕóÈçͼ1.16Ëùʾ£¬ÊÔд³ö´Ó¶¥µãV0³ö·¢·Ö±ð½øÐÐÉî¶ÈÓÅÏÈºÍ ¹ã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁС£ Éî¶ÈÓÅÏÈËÑË÷ÐòÁÐ:£ß£ß¡£ ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº£ß£ß¡£ 16.ÒÑÖªÒ»¸öÎÞÏòͼµÄÁÚ½Ó±íÈçͼ1.17Ëùʾ£¬ÊÔд³ö´Ó¶¥µãV0³ö·¢·Ö±ð½øÐÐÉî¶ÈÓÅÏȺ͹ã¶ÈÓÅÏÈËÑË÷±éÀúµÃµ½µÄ¶¥µãÐòÁС£ Éî¶ÈÓÅÏÈËÑË÷ÐòÁÐ:£ß£ß¡£ ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº£ß£ß¡£ 17.ÒÑÖªÒ»¸ö´øÈ¨ÓÐÏòͼÈç1.18Ëùʾ£¬ÓõϽÜË¹ÌØÀÌá³öµÄËã·¨ÇóÆäÈÎÒ»¶Ô½áµãÖ®¼äµÄ×î¶Ì·¾¶¡£ 18.¹¹ÔìÈçͼ1.19Ëùʾ¼ÓȨͼµÄ×îСÉú³ÉÊ÷£¨¸ø³öÀûÓÿ˳˹¿¨¶ûËã·¨¹¹ÔìµÄ¹ý³Ì£©¡£ 19.¶Ô³¤¶ÈΪ11ÓÐÐò¼¯£¬½øÐÐÕÛ°ë²éÕÒ£¬ÊÔ»³öËüµÄÒ»¿ÃÅж¨Ê÷£¬²¢ÇóÔڵȸÅÂÊÇé¿öÏÂµÄÆ½¾ù²éÕÒ³¤¶È¡£ 20.ÒÑÖªÒ»¸ö˳Ðò´æ´¢µÄÓÐÐò±íΪ£¨15£¬26£¬34£¬39£¬45£¬56£¬58£¬63£¬74£¬6£©£¬ÊÔ»³ö¶ÔÓ¦µÄ¶þ·Ö²éÕÒÅж¨Ê÷£¬Çó³öÆäƽ¾ù²éÕÒ³¤¶È¡£ 21.¼Ù¶¨Ò»¸öÏßÐÔ±íΪ£¨38£¬52£¬25£¬74£¬68£¬16£¬30£¬54£¬90£¬72£©»³ö°´ÏßÐÔ±íÖÐÔªËØµÄ´ÎÐòÉú³ÉµÄÒ»¿Ã¶þ²æÅÅÐòÊ÷£¬Çó³öÆäƽ¾ù²éÕÒ³¤¶È¡£ 22.¼Ù¶¨Ò»¸ö´ýÉ¢Áд洢µÄÏßÐÔ±íΪ£¨32£¬75£¬29£¬63£¬48£¬94£¬25£¬36£¬18£¬70£¬49£¬80£©£¬É¢ÁеØÖ·¿Õ¼äΪHT[11]£¬Èô²ÉÓóýÁôÓàÊý·¨¹¹ÔìÉ¢Áк¯ÊýºÍÁ´½Ó·¨´¦Àí³åÍ»£¬ÊÔ»³ö×îºóµÃµ½µÄÁ´Ê½¹þÏ£º¯ÊýÁÐ±í£¬²¢Çó³öƽ¾ù²éÕÒ³¤¶È¡£ 23.ÒÑÖªÒ»×é¼Ç¼Ϊ£¨46£¬74£¬53£¬14£¬26£¬38£¬86£¬65£¬27£¬34£©¡£ £¨1£©¸ø³ö²ÉÓÃÖ±½Ó²åÈëÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£ £¨2£©¸ø³ö²ÉÓÃðÅÝÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£ £¨3£©¸ø³ö²ÉÓÿìËÙÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£ £¨4£©¸ø³ö²ÉÓÃÖ±½ÓÑ¡ÔñÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£ £¨5£©¸ø³ö²ÉÓöÑÅÅÐò·¨½øÐÐÅÅÐòʱÿһÌ˵ÄÅÅÐò½á¹û¡£ 24.±àдһ¸ö¶ÔÕûÐÍÊý×éA[n+1]ÖеÄA[1]ÖÁA[n]ÔªËØ½øÐÐÑ¡ÔñÅÅÐòµÄËã·¨£¬Ê¹µÃÊ×ÏÈ´Ó´ýÅÅÐòÇø¼äÖÐÑ¡Ôñ³öÒ»¸ö×îСֵ²¢Í¬µÚÒ»¸öÔªËØ½»»»£¬ÔÙ´Ó´ýÅÅÐòÇø¼äÖÐÑ¡ÔñÒ»¸ö×î´óÖµ²¢Í¬×îºóÒ»¸öÔªËØ½øÐн»»»£¬·´¸´½øÐÐÖ±µ½×îºó´ýÅÅÐòÇø¼äÖÐÔªËØ¸öÊý²»³¬¹ý1Ϊֹ¡£ ²Î¿¼´ð°¸ Ò» Ñ¡ÔñÌâ 1.D 2.C 3.A 4.B 5.A 6.C 7.C 8.D 9.B 10.B 11.A 12.C 13.B 14.A 15.C 16.D 17.B 18.B 19.C 20.B 21.D 22.C 23.B 24.A 25.A 26.A 27.B 28.A 29.C 30.B 31.C 32.D 33.C 34.D 35.A 36.B 37.B 38.D 39.B 40.A 41.C 42.D 43.A 44.D 45.B 46.B 47.D 48.B 49.C 50.C 51.C 52.B 53.A 54.C 55.C 56.D 57.C 58.A 59.A 60.C 61.D 62.B 63.C 64.A 65.B 66.D 67.A 68.A 69.D 70.D 71.C 72.B 73.B 74.A 75.C 76.D 77.C 78.D 79.B 80.C 81.A 82.A 83.B 84.D 85.A 86.C 87.B 88.D 89.B 90.C 91.B 92.C 93.D 94.A 95.D 96.B 97.C 98.B 99.D 100.B 101.C 102.A 103.C 104.D 105.B 106.C 107.C 108.B 109.D 110.A 111.C 112.B 113.D 114.B 115.A 116.D 117.A 118.A 119.B 120.D ¶þ Ìî¿ÕÌâ 1.ÏßÐΣ»·ÇÏßÐÎ 2.˳Ðò£»Á´Ê½£»Ë÷Òý£»É¢Áд洢½á¹¹ 3. n£»n£¨n+1£©/2£»O£¨n£© 5.˳Ðò£»Á´Ê½ 7Á´Ê½;˳Ðò 9.O£¨1£©£»O£¨n£© 13.p->next->next 4.ÏßÐÔ 6.˳Ðò±í£»Á´Ê½±í 8.O£¨n£©£»O£¨1£© 10.p->next 14.p->next 16.O(1);O(n) 18.ǰÇ÷£»ºóÐø 11.HL->next==NULL; HL->next==HL 12. Ñ»· 15.p->next=head;head=p 17.Ïàͬ 19.q 21. ÏȽøºó³ö£»ÏȽøÏȳö 23.Õ»¶¥Ö¸Õ룻²åÈ루дÈ룩 25.-1£»M-1 27.top->next 29.Pop(s);Pop(s);Push(s,d) 31.front=rear;(r+1)%M==front 33.0;N-1 20. p->prior 22.0;1 24. Õ»¶¥ÔªËØ; Õ»¶¥Ö¸Õë 26£®p->next=top;top=p 28.Push(s,3);Pop(s);Push(s,5) 30.¶Óβ£»¶ÓÊ× 32.(front+1)%M;(r+1)%M 34.¶ÓβָÕ룻²åÈ루дÈ룩 35.p->next=NULL;r=f=p 36.p->next=r->next;r=r->next=p 37.£¨front=rear£©&&(front!=NULL)»òÕߣ¨front=rear£©&&(rear!=NULL)38.¿ÕÕ»£»¿Õ£»Ö»º¬ÓÐÒ»¸ö½áµã 39.1432 40.3080 41.3642.i(i-1)/2+j-1 44.Ê÷ÐÍ»ò²ã´Î 46.¸ù£»Ç°Ç÷£¨¸¸£©£»ºóÐø£¨×Ó£© 48.2£»6 50.10£»4£»3 52.B;IºÍJ 54.2i£»2i+1£»i/2 55.16 56.5£»8 57.A£»F£»¿Õ 58.2£»2£»3 59.a[10];a[11];a[2] 60.a[2i+1];a[2i+2];a[(i-1)/2] 61.2n,n-1,n+1 62.2h-1;2h-1 63.16;31 64.ABCDEF;CBAEDF;CBEFDA 65.2;4;3 66.4;5 67.3 68.4;87 69.ͼ״ 70.2 43.52 45.n-1 47.7£»1£»4£»1 49.3£»4 51.2£»1£»1£»6 53.6 71.n(n-1)/2;n(n-1) 72.4 73.2;4 74.n-1 75.ÁÚ½Ó¾ØÕó£»ÁÚ½Ó±í 76.1 77.3 78.4 79.7 80.n;n 81.e;2e 82.³ö±ß£»Èë±ß 83.acdeb;acedb(´ð°¸²»Î¨Ò») 84.acfebd;acefbd(´ð°¸²»Î¨Ò») 85.Éî¶È£»¹ã¶È 86.Ψһ 87.£¨n+1£©/2 88. 89.20.5;41 90.1b(n+1) 91.6 92.1;3 93.6;19 94.11 95. 96.СÓÚ£»´óÓÚ 97.²éÕҳɹ¦£»×ó×ÓÊ÷£»ÓÒ×ÓÊ÷ 98. ×ó×ÓÊ÷£»ÓÒ×ÓÊ÷ 99.1 100.5 101.2 102.n/m 103.3;2 104.²åÈ룻ѡÔñ 105.4 106.Ö±½Ó²åÈë 107.n-1;1 108.(46,56,38,40,79,84) 109.4 110.ðÅÝ 111.3 112.4 113.[40 38]46[56 79 80] 114.¿ìËÙ 115.O(n2); O(n) 116.2 117.¿ìËÙ 118.£¨40£¬46£¬56£¬79£¬84£¬38£© 119.¶ÑÅÅÐò 120.¼òµ¥ÅÅÐò Èý Ãû´Ê½âÊÍ Êý¾ÝÊÇÖ¸·´Ó³¿Í¹ÛÊÂÎïµÄÐÅÏ¢µÄ¼¯ºÏ£¬ËüÊÇÊý¾Ý½á¹¹ËùÒªÃèÊöµÄ¶«Î÷¡£ 2.Êý¾ÝÔªËØÊÇÊý¾ÝµÄÒ»¸ö¸öÌ壬ËüÊÇÊý¾ÝµÄ»ù±¾µ¥Î»¡£ Êý¾Ý¶ÔÏóÊÇÖ¸ÔÚÊý¾ÝÕâ¸ö¼¯ÌåÖÐÈËÃǸÐÐËȤµÄÒ»¸ö×Ó¼¯£¬Í¨³££¬Êý¾Ý¶ÔÏóÖеÄÔªËØ¾ßÓÐijЩÏàͬµÄÌØÐÔ¡£ Êý¾Ý½á¹¹ÊÇÖ¸Ï໥֮¼äÓйØÁªµÄÊý¾ÝÔªËØµÄ¼¯ºÏ¡£ Âß¼½á¹¹ÊÇÖ¸Êý¾ÝÖ®¼äµÄÂß¼¹ØÏµ¡£ Ëã·¢ÔÚ¼ÆËã»úÖ´ÐÐʱÔÚʱ¼ä×ÊÔ´·½ÃæÏûºÄµÄ¶àÉÙ¡£ Ëã·¢ÔÚ¼ÆËã»úÖ´ÐÐʱÔÚ¿Õ¼ä×ÊÔ´·½ÃæÏûºÄµÄ¶àÉÙ¡£ Õ»ÊDZ»ÏÞ¶¨Îª½öÄÜÔÚ±íβ½øÐвåÈëºÍɾ³ýÔËËãµÄÏßÐÔ±í¡£ ÁжÔÊÇÒ»ÖÖÖ»ÔÊÐíÔÚ±íµÄÒ»¶Ë½øÐвåÈ룬¶øÔÚÁíÒ»¶Ë½øÐÐɾ³ýµÄÊÜÏÞµÄÏßÐÔ±í¡£ ѹËõ´æ´¢ÊÇÖ¸¸ø¶à¸öÖµÏàͬµÄÔªËØÖ»·ÖÅäÒ»¸ö¿Õ¼ä£¬¶ÔÁãÔªËØ²»·ÖÅä¿Õ¼ä¡£ Ê÷ÐͽṹÊÇÒ»ÀàºÜÖØÒªµÄ·ÇÏßÐÔÊý¾Ý½á¹¹£¬ÔÚÕâÀà½á¹¹ÖУ¬ÔªËؽáµãÖ®¼ä´æÔÚÃ÷ÏԵķÖÖ§ºÍ²ã´Î¹ØÏµ¡£ Ò»¸ö½áµãµÄ×ÓÊ÷µÄ¸öÊý³ÆÎª¸Ã½áµãµÄ¶È¡£ Ê÷µÄËùÓнáµãÖÐ×î´óµÄ¶È³ÆÎªÊ÷µÄ¶È¡£ Ê÷µÄÉî¶ÈÊÇÖ¸Ê÷µÄËùÓнáµãÖÐ×î´óµÄ²ã´Î£¬ÓÖ³ÆÊ÷µÄ¸ß¶È¡£ ÓÐÐòÊ÷ÊÇÖ¸Èç¹ûÒ»¿ÃÊ÷ËùÓнáµãµÄ×Ó½áµãµÄ×óÓÒ˳Ðò²»¿Éµßµ¹µÄÊ÷¡£ ±éÀúÊÇÖ¸ÑijÌõÏß·£¬ÒÀ´Î·ÃÎÊijÊý¾Ý½á¹¹ÖеÄÈ«²¿½áµã£¬¶øÇÒÿ¸ö½áµãÖ»±»·ÃÎÊÒ»´Î¡£ ¹þ·òÂüÊ÷ÊÇÖ¸ÒÔÎı¾ÖгöÏÖµÄ×Ö·ûΪҶ×Ó½áµãµÄ×îÓŶþ²æÊ÷£¬ÆäÖÐÒ¶×Ó½áµãµÄȫֵΪ¸Ã×Ö·ûÔÚÎı¾ÖгöÏֵļ¸ÂÊ¡£ ÁÚ½Ó¹ØÏµÊÇÖ¸ÔÚÎÞÏòͼÖÐÈô´æÔڱߣ¨Vi£¬Vj£©£¬Ôò³Æ½áµãViÁÚ½ÓÓÚVj»ò½áµãVjÁÚ½ÓÓÚVi£»ÔÚÓÐÏòͼÖÐÈô´æÔڱߣ¨Vi£¬Vj£©£¬Ôò³Æ½áµãVjÁÚ½ÓÓÚ½áµãVi¡£ ·¾¶ÊÇÁ¬½ÓÁ½¸ö½áµãµÄ±ßµÄ¼¯ºÏ¡£ Èç¹ûÎÞÏòͼÖеÄÈÎÒâÁ½¸ö½áµã¶¼ÊÇͨµÄ£¬Ôò³ÆÎÞÏòͼÊÇÁ¬Í¨Í¼¡£ ÔÚÓÐÏòͼÖУ¬ÈÎÒâÒ»¶Ô½áµãViºÍVjÖ®¼ä¶¼´æÔÚ·¾¶£¬Ôò³ÆÓÐÏòͼΪǿÁ¬Í¨Í¼¡£ ÈôÒ»¸öÓÐÏòͼÖÐÿһ¶Ô½áµãÖ®¼ä¶¼´æÔÚÒ»Ìõ±ß£¬Ôò³ÆÎÞÏòͼΪÍêÈ«ÎÞÏòͼ¡£ ÈôÒ»¸öÓÐÏòͼÖÐÿһ¶Ô½áµãÖ®¼ä¶¼´æÔÚÁ½Ìõ²»Í¬µÄ±ß£¬Ôò³ÆÓÐÏòͼΪÍêÈ«ÓÐÏòͼ¡£ Ö÷¹Ø¼ü×ÖÊÇÖ¸ÄÜÓÃÀ´Î¨Ò»±êʶ¸Ã¼Ç¼µÄÊý¾ÝÏî¡£ ËÄ ¼ò´ðÌâ ÏßÐԽṹÊÇÖ¸Êý¾ÝÔªËØÖ®¼ä´æÔÚÒ»¶ÔÒ»µÄ¹ØÏµ¡£ Ê÷ÐͽṹÊÇÖ¸ÔªËØÖ®¼ä´æÔÚÒ»¶Ô¶àµÄ¹ØÏµ¡£ ͼ»òÍø×´½á¹¹ÊÇÖ¸Êý¾ÝÔªËØÖ®¼ä´æÔÚ¶à¶Ô¶àµÄ¹ØÏµ¡£ Ëã·¨µÄ¸´ÔÓ¶È·ÖÎö¿É·ÖΪʱ¼ä¸´ÔӶȺͿռ临ÔÓ¶È¡£Ê±¼ä¸´ÔÓ¶ÈÒÔ»ù±¾²Ù×÷ÖØ¸´Ö´ÐеĴÎÊýΪËã·¨µÄʱ¼äÁ¿¶È¡£¿Õ¼ä¸´ÔÓ¶ÈÖ¸Ëã·¢Ëù´æ´¢¿Õ¼äµÄÁ¿¶È¡£ 3.Ҫʹ100n2¿ìÓÚ2nʱ, ±ØÐëÂú×ã100n2(2n, ¿ÉÒÔËã³önµÄֵΪ15ʱ, 2nÇ¡ºÃ´óÓÚ100n2, Ëù ÒÔÖÁÉÙÓ¦¸ÃÊÇ15. 4.²åÈëÒ»¸ö½áµãҪƽ¾ùÒÆ¶¯n/2½áµã£»É¾³ýÒ»¸ö½áµãҪƽ¾ùÒÆ¶¯£¨n-1£©/2½áµã£»¾ßÌåµÄÒÆ¶¯´ÎÊýÈ¡¾öÓÚnµÄ´óСºÍ²åÈë»òɾ³ýµÄλÖÃÕâÁ½¸öÒòËØ¡£ 5.ÏßÐÔ±íÊÇÖ¸ÓÉn£¨n>=0£©¸öÊý¾ÝÔªËØ{a0,a1.a2?.an-2,an-1}×é³ÉµÄÓÐÏÞÐòÁС£¸ÃÐòÁÐҪôΪ¿Õ»ò½öÓÐÒ»¸öÔªËØ£¬ÒªÃ´³ýÁ˵ÚÒ»¸öÔªËØÃ»ÓÐǰÇ÷ÒÔ¼°×îºóÒ»¸öÔªËØÃ»ÓкóÐøÖ®Í⣬ÆäËûÔªËØ¶¼ÓÐÇÒ½öÓÐÒ»¸öǰÇ÷£¬Ò²ÓÐÇÒ½öÓÐÒ»¸öºóÐø¡£ÏßÐÔ±í¿ÉÒÔ±íʾΪ£º{ai|IÊôÓÚ[0£¬n-1]} µ¥Á´±íÊÇÖ¸±ØÐëÊÇÓÐÒ»¸ö³ÆÎª±íÍ·µÄÖ¸ÕëÏòÁ¬½Ó£¬N¸ö½áµãÐγÉÒ»¸öÁ´£¬ÇÒÿ¸ö½áµãÖ»ÓÐÒ»¸öÖ¸ÕëÓòµÄÏßÐÔ±í¡£ ÏßÐÔ±íµÄ´æ´¢·½Ê½ÊÇÖ¸ÏßÐÔ±íµÄ´æ´¢·½Ê½·ÖΪÏßÐÔ´æ´¢ºÍÁ´Ê½´æ´¢Á½ÖÖ£¬ÆäÖÐ˳Ðò´æ´¢ÊÇÖ¸ÏßÐÔ±íµÄ˳Ðò´æ´¢£¬Á´Ê½´æ´¢ÊÇÖ¸ÏßÐÔ±íÖеÄÿһ¸ö½áµãÆäÎïÀíλÖÿÉÁ¬Ðø£¬Ò²¿É²»Á¬Ðø£¬µ«ÊǸ÷½áµã¼äͨ¹ýÖ¸ÕëÏàÁ¬¡£ Ñ»·Á´±íÊÇÖ¸°Ñµ¥Á´±íµÄĩβ½áµãÖÖµÄÖ¸ÕëÓòÖ¸ÏòÍ·½áµã£¬Ðγɻ·Ð͵ÄÁ´±í¡£ Ë«ÏòÁ´±íÊÇÖ¸±ØÐë¾ßÓÐÒ»¸öÍ·Ö¸Õ룬ÿ¸ö½áµãÓÐÁ½¸öÖ¸ÕëÓò£¬Ò»¸öÖ¸Ïò¸Ã½áµãµÄǰÇ÷£¬Ò»¸öÖ¸Ïò¸Ã½áµãµÄºó¼ÌµÄÏßÐÔ±í¡£ 6£®ÔÚµ¥Á´±íÖв»ÄÜɾ³ý£¬¶øÔÚË«Á´±íºÍµ¥Ñ»·Á«±íÖпÉÒÔɾ³ýp½áµã¡£Ë«ÏòÁ´±íµÄɾ³ýp½áµãµÄʱ¼ä¸´ÔÓ¶ÈΪO(1)£¬µ¥ÑÁ´±íɾ³ýp½áµãµÄʱ¼ä¸´ÔÓ¶ÈΪO£¨1£©¡£ 7£®ÔÚÑ»·Á´±íÖпÉÒÔÓÉβָÕë±íʾ¡£ 8£®ÒòΪÔÚ˳Ðò±íÖвåÈë»òɾ³ýʱ£¬ÐèÒªÒÆ¶¯´óÁ¿µÄÊý¾Ý£¬ËùÒÔÔÚÐèÒªÌá¸ß²éÕÒЧÂÊ£¬¶ø½ÏÉÙ²åÈë»òɾ³ýµÄÇé¿öÏ£¬¿ÉÒÔ²ÉÓÃ˳Ðò´¢´æ£»Á´Ê½´æ´¢½á¹¹±ãÓÚ²åÈëºÍɾ³ý¡£µ«ÊDz»±ãÓÚ²éÕÒ½áµã¡£ËùÒÔ¶ÔÓÚÐèÒª¾³£ÐÞ¸ÄÏßÐÔ±í½áµãλÖõÄÇé¿öÏ£¬²ÉÓÃÁ´Ê½´æ´¢ÎªÒË¡£ 9£®Õ»£¬¶ÓÁж¼ÊÇÒ»ÖÖÏßÐԽṹ£¬Ö»ÊÇËûÃǵÄÔËËã¹æÔò²»Í¬¡£Õ»ÊÇ×ñÑÏȽøºó³öµÄÔËËã¹æÔò£¬¶ÑÕ»µÄ²ÙÖ»ÄÜÔÚÕ»µÄÒ»¶Ë£¨Õ»¶¥£©½øÐУ»¶ÓÁÐÔò×ñÑÏȽøÏȳöµÄÔËËã¹æÔò£¬¶ÓµÄ²Ù×÷Ö»ÄÜÔÚ¶ÓÁеĶÓÊ×ɾ³ý£¬¶Óβ²åÈë¡£ 10£®£¨1£©1234¡£ £¨2£©Äܵõ½1432£¬²»Äܵõ½1423¡£ÒòΪͬʱѹÈë2£¬3£¬ÔÚµ¯³öʱ¸ù¾Ý¶ÑÕ»µÄÔËËã¹æÔòÖ»Äܵ¯³ö3£¬2¡£ £¨3£©ÔÚ1£¬2£¬3£¬4µÄ¸÷ÖÖÅÅÁÐÖУ¬¸ù¾Ý¶ÑÕ»µÄÔËËã¹æÔò£¨ÏȽøºó³ö£©£¬¿ÉÄܳöÏֵĴÎÐòÊÇ1234£¬1324£¬1432£¬2143£¬2134£¬3214£¬4321¡£ 11£®ÀýÈ磬ÔÚ¿Õ¼äÏÞ¶¨µÄÇé¿öÏ»ð³µÕ¾µÄÒ»ÌõÌú¹ìÉÏÒѾͣÂúÁË»ð³µÒԺ󣬻ð³µÒÑÎÞ·¨ÔÙ½øÕ¾£¬ÕâÊôÓÚÉÏÒ磻µ÷¶ÈÔÚ³µÁ¾ÅÉ¿ÕÒԺ󣬵½Ê±¼äûÓгµÅÉÁË£¬ÕâÊôÓÚÏÂÒç¡£ 12£®Ñ»·¶ÓÁеĴ¢´æ£¬¿ÉÒÔ½â¾ö¼ÙÒç³öµÄÎÊÌâ¡£¿ÕµÄÌõ¼þÊǶÓÊ××·É϶Ó⣬¼Èfront£»ÂúµÄÌõ¼þÊǶÓβ׷É϶ÓÊ×£¬¼Èrear+1=front¡£ 13£®Á½´Î¶ÔÓ¦µÄ´¢´æ×´Ì¬·Ö±ðΪ£º 14£®²»º¬ÈκÎ×Ö·ûµÄ´®³ÆÎª¿Õ´®£¬Æä´®³¤¶ÈΪÁ㣻½öº¬Óпոñ×Ö·ûµÄ´®³Æ×÷¿Õ¸ñ£¬Æä³¤¶ÈΪ´®Öпոñ·ûµÄ¸öÊý¡£ ¿Õ¸ñ·ûÔÚ×Ö·û´®ÖпÉÓÃÀ´·Ö¸ôÒ»°ãµÄ×Ö·û£¬±ãÓÚÔĶÁºÍʶ±ð£¬¿Õ¸ñ·û»áÕ¼Óô®³¤¡£ ¿Õ´®ÔÚ´¦Àí¹ý³ÌÖпÉÓÃÓÚ×÷ΪÈÎÒâ×Ö·û´®µÄ×Ó´®¡£ 15£®Á½¸ö×Ö·û´®ÏàµÈµÄ³äÒªÌõ¼þÊÇ£ºÁ½¸ö´®µÄ³¤¶ÈÏàµÈ£¬ÇÒ¶ÔӦλÖõÄ×Ö·ûÏàµÈ¡£ 16£®¶þ²æÊ÷ÓëÊ÷µÄÇø±ð£º £¨1£©¶þ²æÊ÷µÄ½áµãÖÁ¶àÓÐÁ½¸ö×ÓÊ÷£¬ÊýÔò²»È»£» £¨2£©¶þ²æÊ÷µÄÒ»¸ö½áµãµÄ×ÓÊ÷ÓÐ×ó£¬ÓÒÖ®·Ö£¬¶øÊ÷ÔòûÓдËÒªÇó¡£ ¶ÈΪ2 µÄÊ÷ÓÐÁ½¸ö·ÖÖ§£¬Ã»ÓÐ×ó£¬ÓÒÖ®·Ö£¬Ò»¿Å¶þ²æÊ÷±ßÒ²¿ÉÓÐÁ½¸ö·ÖÖ§¡£µ« ×óÓÒÖ®·Ö¡£ÇÒ×óÓÒ²»Äܽ»»»¡£ 17£®ÏÈÐò±éÀúÐòÁУºABDEFC ÖÐÐò±éÀúÐòÁУºDEFBAC ºóÐò±éÀúÐòÁУºFEDBCA 18.(1)ÓÉÖÐÐò±éÀúÐòÁкÍÏÈÐò±éÀúÐòÁУ¬»òÖÐÐò±éÀúÐòÁкͺóÐò±éÀúÐòÁУ¬¿ÉÒÔΨһȷ¶¨Ò»¿Å¶þ²æÊ÷¡£ ÓÉÏÈÐòÐòÁÐÖª£¬¸ù½áµã×îÏȱ»·ÃÎÊ£¬¾Í¿ÉÈ·¶¨¸ù½áµãΪA£¬¶øÓÖÓÉÖÐÐòÐòÁеÃÖªÒ»¿ÃÊ÷µÄ¸ù½áµãÊÇÆä×ó£¬ÓÒ×ÓÊ÷µÄ·Ö¸ôµã£¬´Ó¶ø¿ÉÈ·¶¨ÒÔAΪ¸ùµÄ×ó×ÓÊ÷µÄ½áµãΪB,C,D,ÓÒ×ÓÊ÷µÄ½áµãΪE,F,G¡£Öظ´½øÐоͿɵõ½¶þ²æÊ÷¡£ £¨2£©ÓÉÏÈÐò±éÀúÐòÁкͺóÐò±éÀúÐòÁв»ÄÜΨһȷ¶¨Ò»¿Ã¶þ²æÊ÷¡£ÒòΪÁ½ÖÖ±éÀú·½·¨Ö»ÄÜÈ·¶¨¸ù½áµã£¬¶ø·Ö²»Çå×óÓÒ×ÓÊ÷¡£ 19£®¶þ²æÊ÷Èçͼ1.20Ëùʾ. 20£®¶ÈΪ2µÄÓÐÐòÊ÷ÊÇÖ¸×ÓÊ÷´Ó×óÏòÓÒÊÇÓдÎÐòµÄ£¬Ã¿¸ö½áµã×î¶àÓÐÁ½¸ö·ÖÖ§£¬¶þ²æÊ÷µÄ×î´ó¶ÈÒ²ÊÇ2£¬²¢ÇÒ×ÓÊ÷ÓÐ×óÓÒÖ®·Ö¡£´Ó±íÃæÉÏ¿´ºÃÏñûÓÐʲô²»Í¬£¬µ«Êǵ±Ö»ÓÐÒ»¸ö×ÓÊ÷ʱ£¬¶ÈΪ2µÄÓÐÐòÊ÷ûÓÐ×óÓÒÖ®·Ö£¬¶ø¶þ²æÊ÷±ØÐëÓÐ×óÓÒÖ®·Ö£¬Õâ¾ÍÊǶÈΪ2µÄÓÐÐòÊ÷ºÍ¶þ²æÊ÷µÄÖ÷񻂿±ð¡£ 21£®¼ÙÉè½áµãΪA,B,C,3¸ö½áµãµÄÊ÷µÄ״̬Èçͼ1.21Ëùʾ. 3¸ö½áµãµÄ¶þ²æÊ÷µÄ״̬Èçͼ1.22Ëùʾ . 22£®×îÉÙӦΪ2h-1+1¸ö½áµã£¬×î¶àΪ2 h -1¸ö½áµã¡£ 23£®Ë³Ðò´æ´¢Èçͼ1.23Ëùʾ. Á´Ê½´æ´¢Èçͼ1.24Ëùʾ. 24£®´ð£º¼ÙÉè8¸ö×ÖĸËù¶ÔÓ¦µÄȨֵΪ{5£¬25£¬4£¬7£¬9£¬12£¬30£¬8}£¬²¢ÇÒn=8¡£ ¸ù¾Ý¹þ·òÂüµÄ¹¹Ôì·½·¨¡£½«8¸ö½áµã¹¹³É¹þ·òÂüÊ÷£¬°´ÕÕ×ó0ÓÒ1µÄÔÔò£¬¿ÉÒԵõ½×ÖĸµÄºÀ·òÂü±àÂëΪ£º A.1001 B.11 C.1000 D.0000 E.101 F.001 G.01 H.0001 25.(1)Éî¶ÈÓÅÏȱéÀú£ºV1,V2,V3,V8,V5,V7,V4,V6 ¹ã¶ÈÓÅÏȱéÀú£ºV1,V2,V4,V6,V3,V5,V7,V8 (2)×î¶Ì·¾¶Îª£º£¨V1,V2,,V5,V7,V8£© 26£®£¨1£©ÁÚ½Ó¾ØÕóΪ£ºA 0 0 0 1 0 0 AµÄÈë¶ÈΪ2£¬³ö¶ÈΪ1 B 1 0 1 0 0 0 BµÄÈë¶ÈΪ2£¬³ö¶ÈΪ2 C 0 0 0 1 1 1 CµÄÈë¶ÈΪ1£¬³ö¶ÈΪ3 D 0 0 0 0 0 0 E 1 1 0 1 0 0 F 0 1 0 0 1 0 £¨2£©ÁÚ½Ó±íΪÈçͼ1.25Ëùʾ¡£ A D B A C C D E F D E A B D F B E ÄæÁÚ½Ó±í°´±ßµÄ·½Ïò·´Ö®¼´¿É¡£ £¨3£©Ç¿Á¬Í¨·ÖÁ¿Èçͼ1.26Ëùʾ¡£ ͼ 1.26 27£®£¨1£©µÄÎÞÏòͼÈçͼ1.27£¨a£©Ëùʾ£»£¨2£©µÄÓÐÏòͼÈçͼ1.27£¨b£©Ëùʾ¡£ £¨b£© ͼ 1.27 28£®£¨1£©²ÉÓÃÁÚ½Ó¾ØÕó±íʾʱ£¬ÎÞÏòͼµÄ×ܱßÊýΪËùÓÐÊýÖµÖ®ºÍ³ýÒÔ2£»ÓÐÏòͼµÄ×ܱßÊýΪ¸÷ÐÐÊýÖµÖ®ºÍ¡£²ÉÓÃÁÚ½Ó±í±íʾʱ£¬ÎÞÏòͼµÄ±ßÊýΪÄÚ²¿¶¥µã¸öÊý³ýÒÔ2£»ÓÐÏòͼµÄ±ßÊýΪÄÚ²¿¶¥µã¸öÊý¡£ £¨2£©¶ÔÓÚÎÞÏòͼÊÇÒÔͼÖÐiÐкÍjÁеĽ»²æµãµÄÖµÊÇ·ñΪ1£»¶ÔÓÚÓÐÏòͼÊÇÒÔͼÖÐiÐÐjÁн»²æµã»òiÁÐjÐн»²æµãµÄÖµÊÇ·ñΪ1À´Åж϶¥µãiºÍjÊÇ·ñÓбßÏàÁ¬¡£ £¨3£©ÎÞÏòͼ¶¥µãµÄ¶ÈΪÿһÐеÄÊýÖµÖ®ºÍ£»ÓÐÏòͼ¶¥µã¶ÈΪ¸ÃÐк͸ÃÁÐÊýÖµÖ®ºÍ¡£ 29£®Ë³Ðò²éÕÒ£º±íÖÐÔªËØ¿ÉÒÔÈÎÒâ´æ·Å¡£ ÕÛ°ë²éÕÒ£º±íÖÐÔªËØ±ØÐëÒԹؼü×ֵĴóС°´µÝÔö»òµÝ¼õµÄ´ÎÐò´æ·Å¡£ ·Ö¿é²éÕÒ£º±íÖÐÔªËØÃ¿¿éÄÚµÄÔªËØ¿ÉÒÔÈÎÒâ´æ·Å£¬µ«ÊÇ¿éÓë¿éÖ®¼ä±ØÐëÒԹؼü×ֵĴóС°´µÝÔö»òµÝ¼õµÄ´ÎÐò´æ·Å¡£ 30£®Ë³Ðò²éÕÒ£º²éÕҳɹ¦Ê±µÄƽ¾ù²éÕÒ³¤¶ÈΪ£ºASL=£¨n+1£©/2 ÕÛ°ë²éÕÒ£º²éÕҳɹ¦Ê±µÄƽ¾ù²éÕÒ³¤¶ÈΪ£ºASL=lg£¨n+1£©-1 ·Ö ¿é²éÕÒ£º²éÕҳɹ¦Ê±µÄƽ¾ù²éÕÒ³¤¶ÈµÄ´óСÓëÆäÈ·¶¨ËùÔÚ¿éËù²ÉÓõIJéÕÒ·½·¨Óйء£ÈôÓÃ˳Ðò²éÕÒ·¨È·¶¨ËùÔڿ飬Ôòƽ¾ù²éÕÒ³¤¶ÈΪ£¨n/s+s£©/2+1£»ÈôÓÃÕÛ°ë²éÕÒ·¨È·¶¨ËùÔڵĿ飬ƽ¾ù²éÕÒ³¤¶ÈΪlg£¨n/s+1£©+s/2£¬ÆäÖÐsΪÿ¿éº¬ÓеÄÔªËØ¸öÊý¡£ 31£®£¨1£©ÓÉÓÚÉ¢ÁбíµÄ³¤¶ÈΪ12£¬Ôò¿ÉÑ¡²»³¬¹ý±í³¤µÄ×î´óËØÊý11×÷Ϊ³ýÁôÓàÊý·¨µÄÄ££¬Ôò¿ÉµÃÆä¹þÏ£º¯ÊýΪH£¨k£©=k¡£ £¨2£©ÈôÓÃÏßÐÔ̽²âÔÙÉ¢Áз¨½â¾ö³åÍ»£¬Ôò¿É¹¹Ôì³öÉ¢ÁбíÈç 13 14 35 17 29 153 0 1 2 3 4 5 6 7 8 9 10 11 ´Ëʱ£¬Æä×°ÌîÒò×ÓΪ6/12=1/2£¬ÈôÓÃÁ´Ê½·¨½â¾ö³åÍ»£¬ÔòÆäÉ¢ÁбíÈçͼ1£®28Ëùʾ¡£ 32£®´ËÖÖÅÅÐòËã·¨ÊDz»Îȶ¨µÄ¡£ ÓÉÓÚÑ¡ÔñÅÅÐòËã·¨µÄÔÔòÊǴӼǼÖÐÕÒµ½×îС£¨»ò×î´ó£©Õß²¢ÓëµÚÒ»¸ö¼Ç¼½»»»£¬Ò»µ©±»»»µ½Ä³¸öλÖÃÒÔºóÔÙÒ²²»¶¯ÁË£¬´ËÖÖ·½·¨²»Äܱ£Ö¤¾ßÓÐÏàͬÅÅÐòÂëµÄ¼Ç¼ÔÀ´Ëù¾ßÓеÄÏà¶Ô´ÎÐò£¬¼´ÔÀ´ÅÅÔÚÇ°ÃæµÄ¾ÅÅÐòºóÓпÉÄÜÅÅÔÚ¾ßÓÐÏàͬÅÅÐòÂë¼Ç¼µÄºóÃæ£¬ËùÒÔ´ËÖÖÅÅÐòËã·¨ÊDz»Îȶ¨µÄ¡£ 33£® ³õʼ¹Ø¼ü×ÖÐòÁÐΪ£º £¨19£¬01£¬26£¬92£¬87£¬11£¬43£¬87£¬21£© µÚÒ»±éÅÅÐò±È½Ï8´Î£¬½»»»6´Îºó³ÉΪ£º £¨01£¬19£¬26£¬87£¬11£¬43£¬87£¬21£¬92£© µÚ¶þ±éÅÅÐò±È½Ï7´Î£¬½»»»3´Îºó³ÉΪ£º £¨01£¬19£¬26£¬11£¬43£¬87£¬21£¬87£¬92£© µÚÈý±éÅÅÐò±È½Ï6´Î£¬½»»»2´Îºó³ÉΪ£º £¨01£¬19£¬11£¬26£¬43£¬21£¬87£¬87£¬92£© µÚËıéÅÅÐò±È½Ï5´Î£¬½»»»2´Îºó³ÉΪ£º £¨01£¬11£¬19£¬26£¬21£¬43£¬87£¬87£¬92£© µÚÎå±éÅÅÐò±È½Ï4´Î£¬½»»»1´Îºó³ÉΪ£º £¨01£¬11£¬19£¬21£¬26£¬43£¬87£¬87£¬92£© µÚÁù±éÅÅÐò±È½Ï3´Î£¬½»»»0´Î¡£ÅÅÐòÍê±Ï¡£ ͼ£±£®28 34£®Ö±½Ó²åÈëÅÅÐòËã·¨ÊÇÎȶ¨µÄ¡£ Ëü²»»á½«¾ßÓÐÏàͬ¹Ø¼ü×ֵļǼ²åÈëµ½Æä¼Ç¼µÄÇ°Ãæ£¬ËùÒÔÖ±½Ó²åÈëÅÅÐòËã·¨ÊÇÎȶ¨µÄ¡£ 35£®ÒòΪÔÚ¶ÑÅÅÐòʱ£¬ÔÚµ÷Õû¶ÑµÄ¹ý³ÌÖУ¬ÓпÉÄܸıä¾ßÓÐÏàͬ¹Ø¼ü×ÖµÄÔªËØµÄÏȺó´ÎÐò£¬ ¹Ê¸ÃÅÅÐò·½·¨ÊDz»Îȶ¨µÄ¡£ÀýÈ磬³õʼÐòÁÐΪ8£¬5£¬5£¬°´´ÓСµ½´ó½øÐÐÅÅÐò£¬Ôò³õʼ״̬Ϊ£º µ÷ÕûΪ¶Ñ Êä³ö5 µ÷ÕûΪ¶Ñ Êä³ö5 ÏÔÈ»£¬Á½¸ö5µÄÏà¶Ô˳Ðò·¢ÉúÁ˱仯£¬ËùÒÔÊDz»Îȶ¨µÄ¡£ Îå¡¢Ó¦ÓÃÌâ 1£®£¨1£©¼ÆËã µÄÖµ¡£Ê±¼ä¸´ÔÓÐÔΪO£¨n£©¡£ £¨2£©´òÓ¡³öÒ»¸ö¾ßÓÐnÐеij˷¨±í£¬µÚiÐУ¨1¡Üi¡Ün£©ÖÐÓÐn-i+1¸ö³Ë·¨Ïÿ¸ö³Ë·¨ÏîΪiÓëj£¨i¡Üj¡Ün£©µÄ³Ë»ý¡£Ê±¼ä¸´ÔÓÐÔΪO£¨n2£©¡£ £¨3£©Ê¹Êý×éa[M£¬£Î]ÖеÄÿһ¸öÔªËØ¾ù³ËÒÔ£äµÄÖµ¡£Ê±¼ä¸´ÔÓÐÔΪ£Ï£¨M*N£©¡£ 2£®Ë³Ðò±í£ÌΪ£º£¨15£¬12£¬8£¬5£¬50£¬30£¬5£¬8£¬12£¬15£© 3£®HLµ¥Á´±íËù¶ÔÓ¦µÄÏßÐÔ±íΪ£º£¨12£¬26£¬8£¬15£¬30£¬50£¬9£© 4£®Ëã·¨ÈçÏ£º /* ´Ó˳Ðò±íÉÏͳ¼Æ³öֵΪxµÄÔªËØ¸öÊýµÄËã·¨*/ int Count£¨sqlist &L£¬datatype x£©? { int i=0£¬j£» for £¨j=0£»j } /*´Óµ¥Á´±íÉÏͳ¼Æ³öֵΪxµÄÔªËØ¸öÊýµÄËã·¨*/ int Count£¨lklist &HL£¬datatype x£© {node p=HL£®Head¡ª>next£» int i=0£» while£¨p£¡=NULL£© {if£¨p¡ª>data==x£©i++£» p=p¡ª>next£» } return£» } 5£®Ëã·¨ÈçÏ£º /*´Ó˳Ðò±íÖÐɾ³ý¾ßÓиø¶¨ÖµxµÄËùÓÐÔªËØ*/ void Deletel£¨sqlist &L£®datatype x£© {int i£¬j=0£» while£¨i {if £¨L£®data[i]==x£© /*ɾ³ýϱêΪiµÄÔªËØ*/ {for£¨j=i+1;j } } /*´Óµ¥Á´±íÖÐɾ³ý¾ßÓиø¶¨ÖµµÄxµÄËùÓÐÔªËØ*/ void Deletel£¨lklist &HL£¬datatype x£© {node *p=HL£®head£» node *q£» while£¨p¡ª>next!=NULL£© {q=p¡ª>next£» if £¨q¡ª>data==x£©/*ɾ³ýpµÄºó¼Ì½áµã£¬¼´q½áµã*/ {p¡ª>next=q¡ª>next£» delete q£» } else p=p¡ª>next£» } } 6 Ëã·¨ÈçÏ£º / *´Ó˳Ðò±íÖÐɾ³ýËùÓÐÆäÖµÖØ¸´µÄ¶àÓàÔªËØ£¬Ê¹ËùÓÐÔªËØµÄ¾ùÖµ²»Í¬*/ void Delete2£¨sqlist &L£© {int i = 0; /* ÿѻ·Ò»´Î½«É¾³ýdata[i]ºóÃæÓë´ËÖµÏàͬµÄËùÓÐÔªËØ*/ while £¨i while£¨j {if£¨L.data[j]= =L.data[i]£©/*´Ó˳Ðò±íÖÐɾ³ýdata[j]ÔªËØ*/ {int k; for£¨k=j+1;k£¬L.last;k++£© L.data[k£1]=L.data[k]; L.last¨D¨D; } else j++; } i++; } } /*´Óµ¥Á´±íÖÐɾ³ýËùÓÐÆäÖµÖØ¸´µÄ¶àÓà½áµã£¬Ê¹ËùÓнáµãµÄ¾ùÖµ²»Í¬*/ void Delete2£¨lklist &HL£© {node *p=HL.head; /* pÖ¸ÏòµÚÒ»¸ö½áµã*/ while £¨p!=NULL£© {/*ÓÃt2Ö¸Ïò´ý´¦ÀíµÄ½áµã£¬t2Ö¸Ïòt2µÄǰÇ÷½áµã*/ node *t1=p£¬*t2=p£>next; /*´ËÑ»·½«´ÓpºóÃæµÄµ¥Á´±íÖÐɾ³ýËùÓÐÓëp½áµãÖµÏàͬµÄ½áµã*/ while£¨t2!=NULL£© {if£¨t2£>data= = p£>data£© /*ɾ³ýt2½áµã*/ {t1£>next=t2£>next; delete t2; t2=t1£>next; /*t2Ö¸ÏòеĽáµã*/ } else /*Ö¸ÕëºóÒÆ£¬ÒԱ㴦ÀíÏÂÒ»¸ö½áµã*/ {t1=t2;t2=t2£>next; } } p=p£>next; /*pÖ¸ÏòÏÂÒ»¸ö½áµã*/ } } £·£®µÚ£¨1£©ÁпÉÒԵõ½£¬²Ù×÷¹ý³ÌΪ£ºPush£¨S£¬A£©£¬Push£¨S£¬B£©£¬Push£¨S£¬C£©£¬Pop£¨S£©£¬Push£¨S£¬D£©£¬Pop£¨S£©£¬Pop£¨S£©£¬Push£¨S£¬E£©£¬Pop£¨S£©£¬Push£¨S£¬F£©£¬Pop£¨S£©£¬Pop£¨S£©¡£ µÚ£¨2£©¸öÐòÁпÉÒԵõ½£¬²Ù×÷¹ý³ÌΪ£ºPush£¨S£¬A£©£¬Pop£¨S£©£¬Push£¨S£¬B£©£¬Pop£¨S£©£¬Push£¨S£¬C£©£¬Push£¨S£¬D£©£¬Push£¨S£¬E£©£¬Pop£¨S£©£¬Pop£¨S£©£¬Push£¨S£¬F£©£¬Pop£¨S£©£¬Pop£¨S£©¡£ µÚ£¨3£©¸öÐòÁв»¿ÉÒԵõ½£¬ÒòΪ°´ÕÕÕ»µÄºó½øÏȳö»òÕß³ÆÏȽøºó³öµÄÔÔò£¬µ±A£¬B£¬C£¬DÏà¼ÌÈëÕ»£¬ÔÙ½øÐÐÁ½´Î³öջʱ£¬A£¦BÈÔÔÚÕ»ÖУ¬´ËºóÖ»ÄÜBÔÚAÇ°Ãæ³öÕ»£¬¶øÔÚ´ËÐòÁÐÖгöÏÖÁËAÏÈÓÚB³öÕ»µÄÇé¿ö£¬ËùÒÔ˵´ËÐòÁÐÊÇ´íÎóµÄ¡£ µÚ£¨4£©¸öÐòÁв»¿ÉÒԵõ½£¬ÒòΪÔÚijһʱ¿Ì£¬CºÍDͬÔÚÕ»ÖУ¬²¢ÇÒDÊÇÕ»¶¥£¬´ËºóÖ»ÄÜDÏÈÓÚC³öÕ»£¬¶øÔÚ´ËÐòÁÐÖгöÏÖÁËCÏÈÓÚD³öÕ»µÄÇé¿ö£¬ËùÒÔÊÇ´íÎóµÄ¡£ 8£®int SquareSum£¨int n£© { if£¨n==0£©return 0£» else return n*n+Square£¨n-1£©£» } 9£®µÝ¹éËã·¨ÈçÏ£º int Fib£¨int n£© {if £¨n==1||n==2£©return 1£» /*ÖÕÖ¹µÝ¹éÌõ¼þ*/ else return Fib£¨n-1£©+Fib£¨n-2£©£©£»} ·ÇµÝ¹éËã·¨ÈçÏ£º int Fib1£¨int n£© {int a£¬b£¬c£»/*c´ú±íµ±Ç°ÏaºÍb·Ö±ð´ú±íµ±Ç°ÏîÇ°ÃæµÄµÚ¶þÏîºÍµÚÒ»Ïî*/ a=b=1£» if£¨n==1||n==2£© return 1£» else for£¨int i=3£»i<=n£»i++£© {c=a+b£» /*Çó³öµ±Ç°Ïî*/ a=b£» /*°ÑÇ°ÃæµÚÒ»Ï¸øÇ°ÃæµÚ¶þÏî*/ b=c£» /*°Ñµ±Ç°Ï¸øÇ°ÃæµÚÒ»Ïî*/ } return c£» /*·µ»ØËùÇóµÄµÚnÏî*/ } 10£®²åÈë²Ù×÷µÄËã·¨ÈçÏ£º void EnQueue£¨node *&rear£¬datatype &x£©/*ʹÐÂÔªËØxµÄÖµ²åÈ뵽ѻ·Á´¶ÓÖÐ*/ {node *newptr=new node£»/*µÃµ½Ò»¸öÓÉnewptrÖ¸ÕëËùÖ¸ÏòµÄнáµã*/ if£¨newptr==NULL£© {printf£¨¡±Memory allocation failare£¡¡±£©£» exit£¨1£©£» } newptr¡ª>data=x£»/*°ÑxµÄÖµ¸³¸øÐ½áµãµÄÖµÓò*/ if£¨rear==NULL£© rear=newptr¡ª>next=newptr£»/*ÈôÁ´¶ÓΪ¿Õ£¬Ôòнáµã¼ÈÊǶÓÊ×½áµãÓÖÊǶÓβ½áµã*/ else {newptr¡ª>next=rear¡ª>next£»/*ʹнáµãµÄÖ¸ÕëÓòÖ¸Ïò¶ÓÊ×½áµã*/ rear¡ª>next=newptr£» /*ʹ¶Óβ½áµãµÄÖ¸ÕëÓòÖ¸Ïòнáµã*/ rear=newptr£» /*ʹнáµã³ÉΪеĶÓβ½áµã*/ } } } ɾ³ý²Ù×÷µÄËã·¨ÈçÏ£º datatype OutQueue£¨node *&rear£© /*´ÓÑ»·Á´¶ÓÖÐɾ³ý¶ÓÊ×ÔªËØ*/ {if£¨rear==NULL£© {printf£¨¡±Linked queue is empty£¡¡±£©£» exit£¨1£©£» } node *p=rear¡ª>next£» /*ʹPÖ¸Ïò¶ÓÊ×½áµã*/ if£¨p==rear£© rear=NULL£»/*ÈôÁ´¶ÓÖÐÖ»ÓÐÒ»¸ö½áµã£¬Ôòɾ³ýºó¶ÓβָÕëΪ¿Õ*/ else rear¡ª>next=p¡ª>data£» /*ʹ¶Óβ½áµãµÄÖ¸ÕëÓòÖ¸Ïò¶ÓÊ×½áµãµÄºó¼ÌÖ¸Õë*/ datatype temp=p¡ª>data£» /*ÔÝ´æ¶ÓÊ×ÔªËØ*/ delete p£» /*»ØÊÕÔ¶ÓÊ×½áµã*/ return temp£» /*·µ»Ø±»É¾³ýµÄ¶ÓÊ×ÔªËØ*/ } 11£®/*µ±¶þ²æÊ÷rÖÐÿ¸ö½áµãµÄ×óº¢×ÓµÄÖµ´óÓÚÓÒº¢×ÓµÄֵʱ½»»»×óÓÒ×ÓÊ÷*/ void change£¨bitreptr r£© { if £¨r£¡=NULL£© { if£¨r¡ª>lchild£¡=NULL&& r¡ª>rchild£¡=NULL£© if£¨r¡ª>lchild¡ª>data>r¡ª>rchild¡ª>data£© {bitreptr t=r¡ª>lchild£» r¡ª>lchild=r¡ª>rchild£» r¡ª>rchild=t£» } change£¨r¡ª>lchild£©£» change£¨r¡ª>rchild£©£» } } 12£®/*ͳ¼Æ³ö¶þ²æÊ÷ÖеÈÓÚ¸ø¶¨ÖµxµÄ½áµã¸öÊý£¬¸Ãͳ¼ÆÖµÓÉÒýÓñäÁ¿´ø»Ø*/ void count1£¨bitreptr r£¬datatype x£¬int &k£© {if £¨r£¡=NULL£© {if£¨r¡ª>data==x£© k++£» count1£¨r¡ª>lchild£¬x£¬k£©£» count1£¨r¡ª>rchild£¬x£¬k£©£» } } 13£®/*´Ó¶þ²æÊ÷ÖвéÕÒ³öËùÓнáµãµÄ×î´óÖµ²¢·µ»Ø*/ datatype maximum£¨bitreptr r£© {static datatype max=0£» if £¨r£¡=NULL£© {static datatype k1£¬k2£» k1=maximum£¨r¡ª>lchild£©£» k2=maximum£¨r¡ª>rchild£©£» if £¨k1>max£© max=k1£» else if £¨k2>max£© max=k2£» else if£¨r¡ª>data>max£©max=r¡ª>data£» } return max£» } 14£®ÒÀÌâÒâ¿ÉÒÔÉèÕâ8¸ö×Öĸ·Ö±ðΪA£¬B£¬C£¬D£¬E£¬F£¬G£¬H£¬ÔòÒÀ¾Ý¹þ·òÂüÊ÷µÄ¹¹Ôì·½·¨¿ÉµÃÆä¶ÔÓ¦µÄ¹þ·òÂüÊ÷Ϊ£º A B C D E F G H 7 19 2 6 32 3 21 10 ¸ù¾Ý×ó0ÓÒ1µÄÔÔò¿ÉµÃ¸÷×Öĸ¶ÔÓ¦µÄ¹þ·òÂü±àÂëΪ£º A£®1010 B£®00 C£®10000 D£®1001 E£®11 F£®10001 G£®01 H£®1011 15£®Éî¶ÈÓÅÏÈËÑË÷ÐòÁУº0£¬2£¬3£¬5£¬6£¬1£¬4 ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº0£¬2£¬3£¬5£¬6£¬1£¬4 16£®Éî¶ÈÓÅÏÈËÑË÷ÐòÁУº0£¬3£¬6£¬4£¬1£¬5£¬2 ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУº0£¬3£¬2£¬6£¬5£¬4£¬1 17£® ʼµã ÖÕµã ×î¶Ì·¾¶ ×î¶Ì·¾¶³¤¶È V1 V2 £¨V1£¬V2£© 4 V1 V3 £¨V1£¬V2£¬V3£© 6 V2 V1 V3 £¨V2£¬V3£¬V1£© £¨V2£¬V3£© 5 2 V3 V1 V2 £¨V3£¬V1£© £¨V3£¬V1£¬V2£© 3 7 18£®×îСÉú³ÉÊ÷Èçͼ1£®29Ëùʾ¡£ 19£®Éú³ÉµÄ¶þ²æÅÅÐòÊ÷Èçͼ1£®30Ëùʾ¡£ 2 1 2 6 ͼ1£®29 ͼ1£®30 ƽ¾ù²éÕÒ³¤¶È£ºASL=£¨1+2¡Á2£«3¡Á4£«4¡Á4£©/11£½3 20£®ÕÛ°ë²éÕÒÅж¨Ê÷Èçͼ1£®31Ëùʾ¡£ ƽ¾ù²éÕÒ³¤¶È£ºASL=£¨1+2¡Á2£«3¡Á4£«4¡Á3£©/10=2.9 ͼ1£®31 21£®½â´ð£º¶þ²æÅÅÐòÊ÷Èçͼ£±£®32Ëùʾ¡£ ƽ¾ù²éÕÒ³¤¶È£º ASL=£¨1+2¡Á2£«3¡Á3£«4¡Á2+5¡Á2£©/10=3.2 ͼ1£®32 22£®µÃµ½µÄÁ´Ê½¹þÏ£ÁбíÈçͼ1£®33Ëùʾ¡£ ƽ¾ù²éÕÒ³¤¶È£ºASL=£¨1¡Á8£«2¡Á3£«3¡Á1£©/12=17/12 0 1 2 3 80 36 25 4 70 48 5 49 6 94 7 18 29 8 63 9 75 10 32 23£®£¨1£© ³õʼ״̬ [46] 74 53 14 26 38 86 65 27 34 µÚÒ»ÌË [46 74] 53 14 26 38 86 65 27 34 µÚ¶þÌË [46 53 74] 14 26 38 86 65 27 34 µÚÈýÌË [14 46 53 74] 26 38 86 65 27 34 µÚËÄÌË [14 26 46 53 74] 38 86 65 27 34 µÚÎåÌË [14 26 38 46 53 74] 86 65 27 34 µÚÁùÌË [14 26 38 46 53 74 86] 65 27 34 µÚÆßÌË [14 26 38 46 53 65 74 86] 27 34 µÚ°ËÌË [14 26 27 38 46 53 65 74 86] 34 µÚ¾ÅÌË [14 26 27 34 38 46 53 65 74 86] £¨2£© ³õʼ״̬ [46 74 53 14 26 38 86 65 27 34] µÚÒ»ÌË [46 53 14 26 38 74 65 27 34] 86 µÚ¶þÌË [46 14 26 38 53 65 27 34] 74 86 µÚÈýÌË [14 26 38 46 53 27 34] 65 74 86 µÚËÄÌË [14 26 38 46 27 34] 53 65 74 86 µÚÎåÌË [14 26 38 27 34] 46 53 65 74 86 µÚÁùÌË [14 26 27 34] 38 46 53 65 74 86 µÚÆßÌË [14 26 27 34] 38 46 53 65 74 86 £¨3£© ³õʼ״̬ [46 74 53 14 26 38 86 65 27 34] µÚÒ»ÌË [34 27 38 14 26] 46 [86 65 53 74] µÚ¶þÌË [26 27 14] 34 38 46 [74 65 53] 86 µÚÈýÌË 14 26 27 34 38 46 [53 65] 74 86 µÚËÄÌË 14 26 27 34 38 46 53 65 74 86 £¨4£© ³õʼ״̬ [46 74 53 14 26 38 86 65 27 34] µÚÒ»ÌË 14 [74 53 46 26 38 86 65 27 34] µÚ¶þÌË 14 26 [53 46 74 38 86 65 27 34] µÚÈýÌË 14 26 27 [46 74 38 86 65 53 34] µÚËÄÌË 14 26 27 34 [74 38 86 65 53 46] µÚÎåÌË 14 26 27 34 38 [74 86 65 53 46] µÚÁùÌË 14 26 27 34 38 46 [86 65 53 74] µÚÆßÌË 14 26 27 34 38 46 53 [65 86 74] µÚ°ËÌË 14 26 27 34 38 46 53 65 [86 74] µÚ¾ÅÌË 14 26 27 34 38 46 53 65 74 [86] £¨5£©¹¹³É³õʼ¶Ñ£¨¼´½¨¶Ñ£©µÄ¹ý³Ì¡£ 1 2 3 4 5 6 7 8 9 10 46 74 53 14 26 38 86 65 27 34 46 74 53 14 26 38 86 65 27 34 46 74 53 14 26 38 86 65 27 34 46 74 38 14 26 53 86 65 27 34 46 14 38 27 26 53 86 65 74 34 14 26 38 27 34 53 86 65 74 46 ½øÐжÔÅÅÐòµÄ¹ý³Ì£º ³õʼ״̬ 14 26 38 27 34 53 86 65 74 46 µÚÒ»ÌË 26 27 38 46 34 53 86 65 74 [14] µÚ¶þÌË 27 34 38 46 74 53 86 65 [26 14] µÚÈýÌË 34 46 38 65 74 53 86 [27 26 14] µÚËÄÌË 38 46 53 65 74 86 [34 27 26 14] µÚÎåÌË 46 65 53 86 74 [38 34 27 26 14] µÚÁùÌË 53 65 74 86 [46 38 34 27 26 14] µÚÆßÌË 65 86 74 [53 46 38 34 27 26 14] µÚ°ËÌË 74 86 [65 53 46 38 34 27 26 14] µÚ¾ÅÌË 86 [74 65 53 46 38 34 27 26 14] 24£®/*²ÉÓÃÁíÒ»ÖÖÖ±½ÓÑ¡ÔñÅÅÐòµÄ·½·¨¶ÔÊý×éAÖеÄnÔªËØÅÅÐò*/ void SelectSort£¨int A[]£¬int n£© {int x£» int i£¬j£¬k£» /*¹²ÐèÒª½øÐÐn/2ÌË*/ for£¨i=1£»i<=n/2£»i++£© /*ÓÃk±£´æµ±Ç°Çø¼äÄÚ×îÐ¡ÖµÔªËØµÄϱ꣬³õֵΪi*/ {k=i£» /*´Óµ±Ç°ÅÅÐòÇø¼äÖÐ˳Ðò²éÕÒ³ö¾ßÓÐ×îСֵµÄÔªËØA[k]*/ for£¨j=i+1£»j<=n-i+1£»j++£© if£¨A[j] {x=A[i]£»A[i]=A[k]£»A[k]=x£» } /*ÓÃk±£´æµ±Ç°Çø¼äÄÚ×î´óÖµÔªËØµÄϱ꣬³õֵΪn-i+1*/ k=n-i+1£» /*´Óµ±Ç°ÅÅÐòÇø¼äÖÐ˳Ðò²éÕÒ³ö¾ßÓÐ×î´óÖµµÄÔªËØA[k]*/ for£¨j=n-i£»j£©=i+1£»j--£© if £¨A[j]>A[k]£© k=j£» /*°ÑA[k]¶Ôµ÷µ½¸ÃÅÅÐòÇø¼äµÄ×îºóÒ»¸öλÖÃ*/ if£¨k£¡=n-i+1£© {x=A[n-i+1]£»A[n-i+1]=A[k]£»A[k]=x£» } } }