¹ãÒåÇãÏòµÃ·ÖÆ¥Åä·¨£ºStata³ÌÐò+ʵÀýÂÛÎÄ - ͼÎÄ ÏÂÔØ±¾ÎÄ

362EstimatingtheGPSandthedose¨Cresponsefunction

5.2Optional

ttransf(transformation)(gpscore)speci?esthetransformationofthetreatmentvari-ableusedinestimatingtheGPS.Thedefaulttransformationistheidentityfunction.Thesupportedtransformationsarethelogarithmictransformation,ttransf(ln);thezero-skewnesslogtransformation,ttransf(lnskew0);thezero-skewnessBox¨CCoxtransformation,ttransf(bcskew0);andtheBox¨CCoxtransformation,ttransf(boxcox).TheBox¨CCoxtransformation?ndsthemaximumlikelihoodestimatesoftheparametersoftheBox¨CCoxtransformregressingthetreatmentvariablet(varname)onthecontrolvariableslistedintheinputvariablelist.3normaltest(test)(gpscore)speci?esthegoodness-of-?ttestthatgpscorewillper-formtoassessthevalidityoftheassumednormaldistributionmodelforthetreat-mentconditionalonthecovariates.Bydefault,gpscoreperformstheKolmogorov¨CSmirnovtest(normaltest(ksmirnov)).PossiblealternativesaretheShapiro¨CFranciatest,normaltest(sfrancia);theShapiro¨CWilktest,normaltest(swilk);andtheStataskewnessandkurtosistestfornormality,normaltest(sktest).normlevel(#)(gpscore)setsthesigni?cancelevelofthegoodness-of-?ttestfornor-mality.Thedefaultisnormlevel(0.05).testvarlist(varlist)(gpscore)speci?esthattheextentofcovariatebalancinghastobeinspectedforeachvariableofvarlist.ThedefaultvarlistconsistsofthevariablesusedtoestimatetheGPS.Thisoptionisusefulwhentherearecategoricalvariablesamongthecovariates.gpscore,whichisaregression-likecommand,requiresthatcategoricalvariablesareexpandedintoindicator(alsocalleddummy)variablesetsandthatonedummy-variablesetisdroppedinestimatingtheGPS.However,thebalancingtestshouldalsobeperformedontheomittedgroup.Thiscanbedonebyusingthetestvarlist(varlist)optionandbylistinginvarlistallthevariables,includingthecompletesetofindicatorvariablesforeachcategoricalcovariate.

3.Theproblemiswhetherthetreatmentvariabletakeszerovalue.Insuchacase,theprogramcontinues,forcingatransformationofthetreatmentvariabletotakeasuitablevalue.Speci?cally,weassumethatln(0)=0,ttransf(0)=?1/¦Ëif¦Ë>0,andttransf(0)=ln(0)=0if¦Ë=0,forttransf=bcskew0orboxcox.Allowingforzerovaluesofthetreatmentimpliesthatuntreatedunitsmightbeincludedinthestudy.BecausetheGPSmethodsaredesignedforanalyzingthee?ectofatreatmentintensity,theyspeci?callyrefertothesubpopulationoftreatedunits.Thisimpliesthatincludinguntreatedunitsmightleadtomisleadingresults.

M.BiaandA.Mattei363

test(type)(gpscore)speci?eswhetherthebalancingpropertyhastobetestedusingeitherastandardtwo-sidedttest(thedefault)oraBayes-factor¨Cbasedmethod(test(Bayesfactor)).Theprograminformstheuserifthereissomeevidencethatthebalancingpropertyissatis?ed.Recallthatthetestisperformedforeachsinglevariableintestvarlist(varlist)andforeachtreatmentinterval.Speci?cally,letpbethenumberofcontrolvariablesintestvarlist(varlist),andletKbethenumberofthetreatmentintervals.We?rstcalculatep¡ÁKvaluesoftheteststatistic;thenweselecttheworstvalue(thehighesttvalueinmodulus,orthelowestBayesfactor)andcompareitwithstandardvalues.Table1showsthe¡°orderofmagnitude¡±interpretationsoftheteststatisticsweconsider.

Table1.¡°Orderofmagnitude¡±interpretationsoftheteststatistics

tvalue|t|<1.282

1.282<|t|<1.645

Bayesfactor(BF)?Evidenceforthebalancingproperty(BP)¡Ì

BF>1.00

EvidencesupportstheBP

0.10

¡Ì

1.645<|t|<1.9600.10

|t|>2.576

?

0.01

BF<0.01

DecisiveevidenceagainsttheBP

TheorderofmagnitudeinterpretationsoftheBayesfactorweappliedwereproposedbyJe?reys(1961).

flag(#)(gpscore)speci?esthatgpscoreestimatestheGPSwithoutperformingeitheragoodness-of-?ttestfornormalityorabalancingtest.Thedefault#is1,meaningthatboththenormaldistributionmodelandthebalancingpropertyaretested;thedefaultlevelisrecommended.Weintroducedthisoptionforpracticalreasons.Recallthatdoseresponseestimatesthestandarderrorsofthedose¨Cresponsefunctionbyusingbootstrapmethods.Ineachbootstrapiteration,wewanttoreestimatetheGPSwithouttestingeitherthenormalityassumptionorthebalancingproperty.cmd(regressioncmd)(doseresponsemodel)de?nestheregressioncommandtobeusedforestimatingtheconditionalexpectationoftheoutcomegiventhetreatmentandtheGPS.Thedefaultfortheoutcomevariableiscmd(logit)whentherearetwodis-tinctvalues,cmd(mlogit)whenthereare3¨C5values,andcmd(regress)otherwise.Thesupportedregressioncommandsarelogit,probit,mlogit,mprobit,ologit,oprobit,andregress.

364EstimatingtheGPSandthedose¨Cresponsefunction

regtypet(type)(doseresponsemodel)de?nesthemaximumpowerofthetreatmentvariableinthepolynomialfunctionusedtoapproximatethepredictorforthecon-ditionalexpectationoftheoutcomegiventhetreatmentandtheGPS.Thedefault

??;¦Á),isalinearfunctionofthetypeislinear,meaningthatthepredictor,¦×(T,R

treatment.Alternatively,typecanbequadraticorcubic.regtypegps(type)(doseresponsemodel)de?nesthemaximumpoweroftheesti-matedGPSinthepolynomialfunctionusedtoapproximatethepredictorfortheconditionalexpectationoftheoutcomegiventhetreatmentandtheGPS.Thede-??;¦Á),isalinearfunctionoffaulttypeislinear,meaningthatthepredictor,¦×(T,R

theestimatedGPS.Alternatively,typecanbequadraticorcubic.interaction(#)(doseresponsemodel)speci?eswhetherthemodelforthecondi-tionalexpectationoftheoutcomegiventhetreatmentandtheGPShastheinterac-tionbetweentreatmentandGPS.Thedefault#is1,meaningthattheinteractionisincluded.tpoints(vector)speci?esthatdoseresponseestimatestheaveragepotentialoutcomeforeachlevelofthetreatmentinvector.Bydefault,doseresponsecreatesavectorwiththeithelementequaltotheithobservedtreatmentvalue.Thisoptioncannotbeusedwiththenpoints(#)option(seebelow).npoints(#)speci?esthatdoseresponseestimatestheaveragepotentialoutcomeforeachlevelofthetreatmentbelongingtoasetofevenlyspacedvalues,t0,t1,...,t#,thatcovertherangeoftheobservedtreatment.Thisoptioncannotbeusedwiththetpoints(vector)option(seeabove).delta(#)speci?esthatdoseresponsealsoestimatesthetreatment-e?ectfunctioncon-sideringa#-treatmentgap,whichisde?nedas¦Ì(t+#)?¦Ì(t).Thedefault#is0,meaningthatdoseresponseestimatesonlythedose¨Cresponsefunction,¦Ì(t).filename(?lename)speci?esthatthetreatmentlevelsspeci?edthroughthe

tpoints(vector)optionorthenpoints(#)option,theestimateddose¨Cresponsefunction,and,eventually,theestimatedtreatment-e?ectfunction,alongwiththeirstandarderrors(ifcalculated),bestoredtoanew?lecalled?lename.bootstrap(string)speci?estheuseofbootstrapmethodstoderivestandarderrorsandcon?denceintervals.Bydefault,doseresponsedoesnotapplybootstraptechniques.Insuchacase,nostandarderroriscalculated.Toactivatethisoption,stringshouldbesettoyes.bootreps(#)speci?esthenumberofbootstrapreplicationstobeperformed.Thedefaultisbootreps(50).Thisoptionproducesane?ectonlyifthebootstrap()optionissettoyes.

M.BiaandA.Mattei365

analysis(string)speci?esthatdoseresponseplotstheestimateddose¨Cresponsefunc-tion(s)and,eventually,theestimatedtreatment-e?ectfunction(s),alongwiththecorrespondingcon?denceintervalsiftheyarecalculatedwithbootstrapping.Bydefault,doseresponseplotsonlytheestimateddose¨Cresponseandtreatmentfunc-tion(s).Inordertoplotcon?denceintervals,stringhastobesettoyes.Iftheusertypesanalysis(no),noplotisshown.analysislevel(#)setsthecon?dencelevelofthecon?denceintervals.Thedefaultisanalysislevel(0.95).graph(?lename)storestheplotsoftheestimateddose¨Cresponsefunctionandtheesti-matedtreatmente?ectstoanew?lecalled?lename.Whentheoutcomevariableiscategorical,doseresponsecreatesanew?leforeachcategoryioftheoutcomevariableandnamesit?lenamei.detail(gpscore)displaysmoredetailedoutput.Speci?cally,thisoptionspeci?esthatgpscoreshowstheresultsofthegoodness-of-?ttestfornormality,somesummarystatisticsofthedistributionoftheGPSevaluatedattherepresentativepointofeachtreatmentinterval,andtheresultsofthebalancingtestwithineachtreatmentinterval.Whenthisoptionisspeci?edfordoseresponse,theresultsoftheregressionoftheoutcomeonthetreatmentandtheGPSarealsoshown.

6

Example:TheImbens¨CRubin¨CSacerdotelotterysam-ple

WeusedatafromthesurveyofMassachusettslotterywinners;thedataaredescribedindetailinImbens,Rubin,andSacerdote(2001).Weareinterestedinestimatingthee?ectoftheprizeamountonsubsequentlaborearnings(fromU.S.SocialSecurityrecords).Althoughthelotteryprizeisobviouslyrandomlyassigned,substantialunitanditemnonresponseledtoaselectedsample,wheretheamountoftheprizeispotentiallycorrelatedwithbackgroundcharacteristicsandpotentialoutcomes.Toremovesuchbiases,wemaketheweakunconfoundednessassumptionspecifyingthat,conditionalonthecovariates,thelotteryprizeisindependentofthepotentialoutcomes.4

Thesampleweuseinthisanalysisisthe¡°winners¡±sampleof237individualswhowonamajorprizeinthelottery.Theoutcomeofinterestisyear6(earningssixyearsafterwinningthelottery),andthetreatmentisprize,theprizeamount.Controlvariablesareage,gender,yearsofhighschool,yearsofcollege,winningyear,numberofticketsbought,workstatusafterwinning,andearningssyearsbeforewinningthelottery(withs=1,2,...,6).

WetriedtoreplicatetheresultsproducedbyHiranoandImbens(2004)buthavenotbeenabletonumericallyreplicatealltheirestimatesbecauseofrestrictionsofour

4.Inthiscontext,thenonignorabilityoftheassignmentmechanismisduetothepresenceofnon-response.Therefore,sayingthattheunconfoundednessassumptionallowsustoremoveallbiasesassociatedwithdi?erencesintheobservedcovariatesmeansthatweareimplicitlyassumingthattheoutcomevariableismissingatrandom(Rubin1976).