初二全等三角形所有知识点总结和常考题
知识点: 1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理: ⑴边边边(SSS):三边对应相等的两个三角形全等. ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形 全等.
4.角平分线: ⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过分析,找出由已知推出求证的途径,写出证明过程.
常考题:
一.选择题(共14小题)
1.使两个直角三角形全等的条件是( ) A.一个锐角对应相等 B.两个锐角对应相等 C.一条边对应相等 D.两条边对应相等
2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC
1 / 36
3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )
A.SSS B.SAS C.AAS D.ASA
4.到三角形三条边的距离都相等的点是这个三角形的( ) A.三条中线的交点 B.三条高的交点
C.三条边的垂直平分线的交点 D.三条角平分线的交点
5.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )
A.20° B.30° C.35° D.40°
6.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )
A.1处 B.2处 C.3处 D.4处
7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )
A.3 B.4 C.6 D.5
8.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D
2 / 36
D.∠B=∠E,
∠A=∠D
9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 B.7 C.5 D.4
10.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是( )
A.边角边 B.角边角 C.边边边 D.边边角
11.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
12.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是( )
A.SAS B.ASA C.AAS D.SSS 13.下列判断正确的是( )
A.有两边和其中一边的对角对应相等的两个三角形全等
3 / 36
B.有两边对应相等,且有一角为30°的两个等腰三角形全等 C.有一角和一边对应相等的两个直角三角形全等 D.有两角和一边对应相等的两个三角形全等
14.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( )
A.4个 B.3个 C.2个 D.1个
二.填空题(共11小题)
15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是 cm.
16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .
17.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.
18.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .
19.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带 去玻璃店.
4 / 36