现代液压成形新技术基础知识讲义 下载本文

第4部分:液压成形技术的发展趋势

随着液压成形技术的成熟和人们都减轻质量,降低成本的需求的提高,该技术近十年来在各个领域得到广泛应用。

4.1 内高压成形

内高压成形技术近十年来在汽车工业得到广泛应用,汽车等运输工具对减轻质量和降低成本的需求又促进了内高压成形技术的不断改进,使该技术迅速发展,发展趋势为:

4.1.1 超高压成形。目前,工业生产中使用的内高压成形机的增压器最高压力一般为400MPa。为了适

应更复杂的结构形状和精度、更大壁厚和高强度材料(超高强钢、钛合金和高温合金等),就需 要更高的内压,内压将发展到600MPa,甚至1000MPa。

4.1.2 新成形工艺不断发展。拼焊管内高压成形,将不同厚度或不同材料管材焊接成整体,然后再用

内高压成形加工出结构件,可以进一步减轻结构质量;采用两端直径不同的锥形管,制造特殊结构零件;采用双层管内高压成形制造轿车双层排气管件;还可以采用初始截面形状为非圆形的型材管作为一种预制坯,成形出所要求的零件;内高压成形与连接等工艺复合,把几个管材或经过预成形的管材放在内高压成形模具内,通过成形和连接工艺复合加工为一个零件,进一步减少零件数量,提高构件整体性。

4.1.3 超高强度钢成形。 钢材强度有250MPa提高到1000MPa,塑性由45%降到12%。

4.1.4 热态内压成形。为了解决高性能铝合金、镁合金等轻合金材料室温塑性低、成形困难的问题,采

用加热加压介质成形加工异型截面零件是内高压成形发展的一个重要方向。目前,以耐热油作为介质的温度可以达到300℃,压力达到100MPa,完全能满足铝合金和镁合金管材成形的需要。热态内压成形的主要问题是成形时间长、效率低。对于钛合金,需要在温度达到600℃以上成形,目前的耐热油达不到这个温度,但采用气体作为成形介质是一个很好的解决方案。

4.2板材液压成形

4.2.1进一步提高成形极限和零件质量的成形新技术。向着主动径向加压充液拉深和正反加压充

液拉深、预胀充液拉深和热态充液拉深技术方向发展。主动径向加压充液拉深,除充液室内液体压力作用外,在板料法兰区径向独立施加液压,拉深过程中辅助推动板料向凹模口内流动,可以进一步提高零件成形极限,实现更深、更复杂零件的成形。正反加压充液拉深,在成形批料的上表面施加液压来配合充液拉深,可以部分甚至全部抵消液室压力导致的反胀,尤其适合成形过程中具有较大悬空区的锥形件等的成形,允许施加更大的液室压力,抑制减薄,提高成形极限。预胀充液拉深,先预胀、再拉深,实现应变硬化以达到提高大型零件整体刚度的目的,可因此省去加强筋板,适合大吉普和商用车的顶盖成形。热态充液拉深,将材料的温热性能与充液拉深的技术优势结合起来,可使铝合金及镁合金等成形性能差的轻体材料成形能力得到提高,促进其在航空航天领域的应用。

4.2.2 低塑性材料的拉深成形。

高性能铝合金、镁合金和超高强度钢等材料强度提高、塑性降低,如铝合金、镁合金板材厚向异性指数小、硬化指数低,与钢相比,更易产生破裂和起皱的倾向,普通冲压工艺往往需

- 4 -

要多道工序,工艺繁琐。充液拉深技术可以弥补低塑性材料成形性能方面的不足,节省工序、提高效率。

4.2.3 大型复杂型面零件成形。大型复杂型面零件普通冲压成形往往需要与零件形状尺寸一致的

凸模及与型腔相配的凹模,模具成本高,试模周期长。充液拉深成形只需凸模,凹模型腔可以简化,液室压力起到软凹模的作用使板材贴模,显著降低模具成本,模具调试简单。

4.2.4 与普通拉深工艺复合,提高效率。普通拉深成形出零件的大部分形状,再用液压成形加工

出局部需要的特殊形状;或者先充液拉深成形出零件,再用普通成形工艺,如带孔坯料翻边时先拉深,然后液室压力卸载进行翻边,获得较高的直边。

4.3 壳体液压成形技术:

4.3.1 选用轻质传力介质。采用水作为壳体液压成形的传力介质具有成本低和清洁等优点,但对于

大容积壳体(1000m3以上),水的质量很大,壳体的支撑难度大,限制了给技术的进一步应用,因此开发出密度低于水的介质或者通过在水中混合某种轻质材料使混合物密度降低是壳体液压成形的一个主要发展方向。

4.3.2 应用高能束焊接技术和自动化工艺焊接封闭壳体。目前封闭壳体的焊接技术多为收工电

弧焊,容易引起焊接接头质量问题导致在成形式开裂。因此如何在封闭壳体上实现自动化焊接或引入激光等高能束焊接方法是促进该技术普及的一个基础课题。

4.3.3 铝合金等轻质材料球壳液压成形。由于工业上对轻质材料球壳的需要越来越多,进行铝合金

等材料球壳液压成形也是今后的一个发展方向。铝合金球壳液压成形难点主要在于封闭壳体的液压技术发展趋势液压技术是实现现代化传动与控制的关键技术之一,世界各国对液压工业的发展都给予很大重视。世界液压元件的总销售额为350亿美元。据统计,世界各主要国家液压工业销售额占机械工业产值的2%~3.5%,而我国只占1%左右,这充分说明我国液压技术使用率较低,努力扩大其应用领域,将有广阔的发展前景。液压气动技术具有独特的优点,如:液压技术具有功率重量比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等优点;气动传动具有节能、无污染、低成本、安全可靠、结构简单等优点,并易与微电子、电气技术相结合,形成自动控制系统。因此,液压气动技术广泛用于国民经济各部门。但是近年来,液压气动技术面临与机械传动和电气传动的竞争,如:数控机床、中小型塑机已采用电控伺服系统取代或部分取代液压传动。其主要原因是液压技术存在渗漏、维护性差等缺点。为此,必须努力发挥液压气动技术的优点,克服缺点,注意和电子技术相结合,不断扩大应用领域,同时降低能耗,提高效率,适应环保需求,提高可靠性,这些都是液压气动技术继续努力的永恒目标,也是液压气动产品参与市场竞争是否取胜的关键。 液压产品技术发展趋势由于液压技术广泛应用了高科技成果,如:自控技术、计算机技术、微电子技术、可靠性及新工艺新材料等,使传统技术有了新的发展,也使产品的质量、水平有一定的提高。尽管如此,走向21世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。其主要的发展趋势将集中在以下几个方面。 减少损耗,充分利用能量液压技术在将机械能转换成压力能及反转换过程中,总存在能量损耗。为减少能量的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失;减少或消除系统的节流损失,尽量减少非安全需要的溢流量;采用静压技术和新型密封材料,减少摩擦损失;改善液压系统性能,采用负荷传感系统、二次调节系统和采用蓄能器回路。 泄漏控制泄漏控制包括:防止液体泄漏到外部造成环境污染和外部环境对系统的侵害两个方面。今后,将发展无泄漏元件和系统,如发展集成化和复合化的元件和系统,实现无管连接,研制新型密封和无泄漏管接头,电机油泵组合装置等。无泄漏将是世界液压界今后努力的重要方向之一。 污染控制过去,液压界主要致力于控制固体颗粒的污染,而对水、空气等的污染控制往往不够重视。今后应重视解决:严格控制产品生产过程中的污染,发展封闭式系统,防止外部污染物侵入系统;应改进元件和系统设计,使之具有更大的耐污染能力。同时开发耐污染能力强的高效滤材和过滤器。研究对污染的在线测量;开发油水分离净化装置和排湿元件,以及开

- 5 -

发能清除油中的气体、水分、化学物质和微生物的过滤元江及检测装置。 主动维护开展液压系统的故障预测,实现主动维护技术。必须使液压系统故障诊断现代化,加强专家系统的开发研究,建立完整的、具有学习功能的专家知识库,并利用计算机和知识库中的知识,推算出引起故障的原因,提出维修方案和预防措施。要进一步开发液压系统故障诊断专家系统通用工具软件,开发液压系统自补偿系统,包括自调整、自校正,在故障发生之前进行补偿,这是液压行业努力的方向。 机电一体化机电一体化可实现液压系统柔性化、智能化,充分发挥液压传动出力大、惯性小、响应快等优点,其主要发展动向如下:液压系统将有过去的电液开发系统和开环比例控制系统转向闭环比例伺服系统,同时对压力、流量、位置、温度、速度等传感器实现标准化;提高液压元件性能,在性能、可靠性、智能化等方面更适应机电一体化需求,发展与计算机直接接口的高频,低功耗的电磁电控元件;液压系统的流量、压力、温度、油污染度等数值将实现自动测量和诊断;电子直接控制元件将得到广泛采用,如电控液压泵,可实现液压泵的各种调节方式,实现软启动、合理分配功率、自动保护等;借助现场总线,实现高水平信息系统,简化液压系统的调节、争端和维护。 液压CAD技术充分利用现有的液压CAD设计软件,进行二次开发,建立知识库信息系统,它将构成设计-制造-销售-使用-设计的闭环系统。将计算机防真及适时控制结合起来,在试制样机前,便可用软件修改其特性参数,以达到最佳设计效果。下一个目标是,利用CAD技术支持液压产品到零不见设计的全过程,并把CAD/CAM/CAPP/CAT,以及现代管理系统集成在一起建立集成计算机制造系统(CIMS),使液压设计与制造技术有一个突破性的发展。 新材料、新工艺的应用新型材料的使用,如陶瓷、聚合物或涂敷料,可使液压的发展引起新的飞跃。为了保护环境,研究采用生物降解迅速的压力流体,如采用菜油基和合成脂基或者水及海水等介质替代矿物液压油。铸造工艺的发展,将促进液压元件性能的提高,如铸造流道在阀体和集成块中的广泛使用,可优化元件内部流动,减少压力损失和降低噪声,实现元件小型化。

焊接,因此引入激光焊接等高能束焊接方式显得更为重要。

- 6 -