ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ
µÄͼÏó¿ÉÖª,-¡Ü0ÇÒ¡Ü2a-¡Ü¦Ð,
½âµÃ¡Üa¡Ü.
´ð°¸:
8.ÒÑÖªº¯Êýf(x)=mcos2x+(m-2)sinx,ÆäÖÐ1¡Üm¡Ü2.Èôº¯Êýf(x)µÄ×î´óÖµ¼ÇΪg(m),Ôòg(m)µÄ×îСֵΪ________. ¡¾½âÎö¡¿f(x)=-msinx+(m-2)sinx+
2
=-m++
=-m++-1,
ÒòΪ1¡Üm¡Ü2,ËùÒÔ-¡Ü¡Ü0,¶ø
sin x¡Ê[-1,1],ËùÒÔf(x)max=+-1,
¼´g(m)=+-1,
ËùÒÔ+-1¡Ý2-1=-1,
µ±ÇÒ½öµ±´ð°¸:
-1
=?m=ʱµÈºÅ³ÉÁ¢.
¡¾Ò×´íÌáÐÑ¡¿±¾ÌâÒ׺öÂÔÅж϶ԳÆÖáµÄÈ¡Öµ·¶Î§,ÕýÏÒº¯ÊýµÄÓнçÐÔÒÔ¼°²»µÈʽµÄµÈºÅÄÜ·ñÈ¡µ½.
ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ
Èý¡¢½â´ðÌâ(ÿСÌâ10·Ö,¹²40·Ö) 9.ÒÑÖªÏòÁ¿a=(cosx,sinx+
cosx),b=(cosx-sinx,-sinx),f(x)=a¡¤b.
(1)Çóº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼ä.
(2)µ±x¡Êʱ,Çóf(x)µÄÈ¡Öµ·¶Î§.
¡¾½âÎö¡¿(1)f(x)=a¡¤b =cos x(cos x-=cosx-sinx-2
2
2
sin x)+(sin x+sin xcos x
cos x)¡¤(-sin x)
=cos 2x-sin 2x=2cos,
¦Ð+2k¦Ð¡Ü2x+¡Ü2¦Ð+2k¦Ð?+k¦Ð¡Üx¡Ü+k¦Ð(k¡ÊZ),
ËùÒÔµ¥µ÷µÝÔöÇø¼äΪ:(k¡ÊZ).
(2)ÓÉ(1)µÃ:f(x)=2cos,
ÒòΪx¡Ê,
ËùÒÔ2x¡Ê?2x+¡Ê,
ËùÒÔcos¡Ê,
ËùÒÔf(x)=2cos¡Ê[-,2].
ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ
10.ÒÑÖªÏòÁ¿m=(2sin¦Øx,sin¦Øx),n=(cos¦Øx,-2sin¦Øx)(¦Ø>0),º¯Êýf(x)=m¡¤n+,Ö±Ïßx=x1,x=x2
ÊǺ¯Êýy=f(x)µÄͼÏóµÄÈÎÒâÁ½Ìõ¶Ô³ÆÖá,ÇÒ|x1-x2|µÄ×îСֵΪ. (1)Çó¦ØµÄÖµ.
(2)Çóº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼ä.
(3)Èôf(¦Á)=,ÇósinµÄÖµ.
sin¦Øx)(¦Ø>0),ËùÒÔº¯Êý
¡¾½âÎö¡¿(1)ÒÑÖªÏòÁ¿m=(2sin¦Øx,sin¦Øx),n=(cos¦Øx,-2f(x)=m¡¤n+
=2sin¦Øx¡¤cos¦Øx+sin¦Øx(-2
sin¦Øx)+
=sin 2¦Øx-2sin¦Øx+
2
=sin 2¦Øx+cos 2¦Øx=2sin.
ÒòΪֱÏßx=x1,x=x2ÊǺ¯Êýy=f(x)µÄͼÏóµÄÈÎÒâÁ½Ìõ¶Ô³ÆÖá,ÇÒ|x1-x2|µÄ×îСֵΪ,
ËùÒÔº¯Êýf(x)µÄ×îСÕýÖÜÆÚΪ¡Á2=¦Ð,¼´=¦Ð,µÃ¦Ø=1;
(2)ÓÉ(1)Öª,f(x)=2sin,
Áî2k¦Ð-¡Ü2x+¡Ü2k¦Ð+(k¡ÊZ),½âµÃk¦Ð-¡Üx¡Ük¦Ð+(k¡ÊZ),ËùÒÔº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼äΪ
,k¡ÊZ;
(3)ÓÉÒÑÖªÌõ¼þ,µÃf(¦Á)=2sin=,
ËùÒÔsin=,cos
2
=,
ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ
ËùÒÔcos 2=,
ËùÒÔsin=sin
=-cos 2=-.
11.ÒÑÖªº¯Êýf(x)=sinxcos,x¡ÊR.
(1)½«f(x)µÄͼÏóÏòÓÒƽÒƸöµ¥Î»,µÃµ½g(x)µÄͼÏó,Çóg(x)µÄµ¥µ÷µÝÔöÇø¼ä.
(2)Èôf(¦Á)=-,ÇÒ0<¦Á<,Çósin2¦ÁµÄÖµ.
¡¾½âÎö¡¿(1)f(x)=sin x
=sin xcos x-sinx=
2
sin 2x-
=-
=sin-,
ËùÒÔg(x)=sin-,
ËùÒÔ-+2k¦Ð<2x-<+2k¦Ð