2019½ì¸ß¿¼Êýѧ¶þÂÖ¸´Ï°µÚ¶þƪרÌâͨ¹Ø¹¥ÂÔרÌâ2Èý½Çº¯Êý¼°½âÈý½ÇÐÎרÌâÄÜÁ¦ÌáÉýÁ·Áù2-2-1Èý½Çº¯ÊýµÄ¸ÅÄîͼ ÏÂÔر¾ÎÄ

ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ

µÄͼÏó¿ÉÖª,-¡Ü0ÇÒ¡Ü2a-¡Ü¦Ð,

½âµÃ¡Üa¡Ü.

´ð°¸:

8.ÒÑÖªº¯Êýf(x)=mcos2x+(m-2)sinx,ÆäÖÐ1¡Üm¡Ü2.Èôº¯Êýf(x)µÄ×î´óÖµ¼ÇΪg(m),Ôòg(m)µÄ×îСֵΪ________. ¡¾½âÎö¡¿f(x)=-msinx+(m-2)sinx+

2

=-m++

=-m++-1,

ÒòΪ1¡Üm¡Ü2,ËùÒÔ-¡Ü¡Ü0,¶ø

sin x¡Ê[-1,1],ËùÒÔf(x)max=+-1,

¼´g(m)=+-1,

ËùÒÔ+-1¡Ý2-1=-1,

µ±ÇÒ½öµ±´ð°¸:

-1

=?m=ʱµÈºÅ³ÉÁ¢.

¡¾Ò×´íÌáÐÑ¡¿±¾ÌâÒ׺öÂÔÅж϶ԳÆÖáµÄÈ¡Öµ·¶Î§,ÕýÏÒº¯ÊýµÄÓнçÐÔÒÔ¼°²»µÈʽµÄµÈºÅÄÜ·ñÈ¡µ½.

ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ

Èý¡¢½â´ðÌâ(ÿСÌâ10·Ö,¹²40·Ö) 9.ÒÑÖªÏòÁ¿a=(cosx,sinx+

cosx),b=(cosx-sinx,-sinx),f(x)=a¡¤b.

(1)Çóº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼ä.

(2)µ±x¡Êʱ,Çóf(x)µÄÈ¡Öµ·¶Î§.

¡¾½âÎö¡¿(1)f(x)=a¡¤b =cos x(cos x-=cosx-sinx-2

2

2

sin x)+(sin x+sin xcos x

cos x)¡¤(-sin x)

=cos 2x-sin 2x=2cos,

¦Ð+2k¦Ð¡Ü2x+¡Ü2¦Ð+2k¦Ð?+k¦Ð¡Üx¡Ü+k¦Ð(k¡ÊZ),

ËùÒÔµ¥µ÷µÝÔöÇø¼äΪ:(k¡ÊZ).

(2)ÓÉ(1)µÃ:f(x)=2cos,

ÒòΪx¡Ê,

ËùÒÔ2x¡Ê?2x+¡Ê,

ËùÒÔcos¡Ê,

ËùÒÔf(x)=2cos¡Ê[-,2].

ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ

10.ÒÑÖªÏòÁ¿m=(2sin¦Øx,sin¦Øx),n=(cos¦Øx,-2sin¦Øx)(¦Ø>0),º¯Êýf(x)=m¡¤n+,Ö±Ïßx=x1,x=x2

ÊǺ¯Êýy=f(x)µÄͼÏóµÄÈÎÒâÁ½Ìõ¶Ô³ÆÖá,ÇÒ|x1-x2|µÄ×îСֵΪ. (1)Çó¦ØµÄÖµ.

(2)Çóº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼ä.

(3)Èôf(¦Á)=,ÇósinµÄÖµ.

sin¦Øx)(¦Ø>0),ËùÒÔº¯Êý

¡¾½âÎö¡¿(1)ÒÑÖªÏòÁ¿m=(2sin¦Øx,sin¦Øx),n=(cos¦Øx,-2f(x)=m¡¤n+

=2sin¦Øx¡¤cos¦Øx+sin¦Øx(-2

sin¦Øx)+

=sin 2¦Øx-2sin¦Øx+

2

=sin 2¦Øx+cos 2¦Øx=2sin.

ÒòΪֱÏßx=x1,x=x2ÊǺ¯Êýy=f(x)µÄͼÏóµÄÈÎÒâÁ½Ìõ¶Ô³ÆÖá,ÇÒ|x1-x2|µÄ×îСֵΪ,

ËùÒÔº¯Êýf(x)µÄ×îСÕýÖÜÆÚΪ¡Á2=¦Ð,¼´=¦Ð,µÃ¦Ø=1;

(2)ÓÉ(1)Öª,f(x)=2sin,

Áî2k¦Ð-¡Ü2x+¡Ü2k¦Ð+(k¡ÊZ),½âµÃk¦Ð-¡Üx¡Ük¦Ð+(k¡ÊZ),ËùÒÔº¯Êýf(x)µÄµ¥µ÷µÝÔöÇø¼äΪ

,k¡ÊZ;

(3)ÓÉÒÑÖªÌõ¼þ,µÃf(¦Á)=2sin=,

ËùÒÔsin=,cos

2

=,

ÖÐСѧ½ÌÓý½Ìѧ×ÊÁÏ

ËùÒÔcos 2=,

ËùÒÔsin=sin

=-cos 2=-.

11.ÒÑÖªº¯Êýf(x)=sinxcos,x¡ÊR.

(1)½«f(x)µÄͼÏóÏòÓÒƽÒƸöµ¥Î»,µÃµ½g(x)µÄͼÏó,Çóg(x)µÄµ¥µ÷µÝÔöÇø¼ä.

(2)Èôf(¦Á)=-,ÇÒ0<¦Á<,Çósin2¦ÁµÄÖµ.

¡¾½âÎö¡¿(1)f(x)=sin x

=sin xcos x-sinx=

2

sin 2x-

=-

=sin-,

ËùÒÔg(x)=sin-,

ËùÒÔ-+2k¦Ð<2x-<+2k¦Ð