南京邮电大学数学实验练习题参考答案 下载本文

专业 姓名 学号 成绩

第一次练习

教学要求:熟练掌握Matlab软件的基本命令和操作,会作二维、三维几何图形,能够用Matlab软件解决微积分、线性代数与解析几何中的计算问题。

补充命令

vpa(x,n) 显示x的n位有效数字,教材102页

fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形

在下面的题目中m为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算limmx?sinmxmx?sinmx与 lim33x?0x??xx程序:

syms x

limit((1001*x-sin(1001*x))/x^3,x,0) 结果:

1003003001/6

程序: syms x

limit((1001*x-sin(1001*x))/x^3,x,inf) 结果: 0

1.2 y?ecosxmx,求y'' 1000程序: syms x

diff(exp(x)*cos(1001*x/1000),2) 结果:

-2001/1000000*exp(x)*cos(1001/1000*x)-1001/500*exp(x)*sin(1001/1000*x)

数学实验实验报告

1

专业 姓名 学号 成绩

1.3 计算

??1100ex2?y2dxdy

程序:

dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1) 结果:

2.13935019514228

x4dx 1.4 计算?22m?4x程序: syms x

int(x^4/(1000^2+4*x^2)) 结果:

1/12*x^3-1002001/16*x+1003003001/32*atan(2/1001*x)

1.5 y?excosmx,求y(10)

程序: syms x

diff(exp(x)*cos(1000*x),10) 结果:

-1009999759158992000960720160000*exp(x)*cos(1001*x)-10090239998990319040000160032*exp(x)*sin(1001*x)

数学实验实验报告

2

专业 姓名 学号 成绩

1.6 给出m?x在x?0的泰勒展式(最高次幂为4).

1000.0程序: syms x

taylor(sqrt(1001/1000+x),5) 结果:

1/100*10010^(1/2)+5/1001*10010^(1/2)*x-1250/1002001*10010^(1/2)*x^2+625000/1003003001*10010^(1/2)*x^3-390625000/1004006004001*10010^(1/2)*x^4

1.7 Fibonacci数列{xn}的定义是x1?1,x2?1,

,xn?xn?1?xn?2(n?3,4,)用循环语句编程给出该数列的前20项(要求

将结果用向量的形式给出)。 程序: x=[1,1]; for n=3:20

x(n)=x(n-1)+x(n-2); end x

结果:

Columns 1 through 10

1 1 2 3 5 8 13 21 34 55

Columns 11 through 20

89 144 233 377 610 987 1597 2584 4181 6765

数学实验实验报告

3

专业 姓名 学号 成绩

????211???A??020?1.8 对矩阵,求该矩阵的逆矩阵,特征值,特

??m??41?1000??征向量,行列式,计算A,并求矩阵P,D(D是对角矩阵),使得

6A?PDP?1。

程序与结果:

a=[-2,1,1;0,2,0;-4,1,1001/1000]; inv(a)

0.50100100100100 -0.00025025025025 -0.50050050050050 0 0.50000000000000 0 2.00200200200200 -0.50050050050050 -1.00100100100100 eig(a)

-0.49950000000000 + 1.32230849275046i -0.49950000000000 - 1.32230849275046i 2.00000000000000 [p,d]=eig(a) p =

0.3355 - 0.2957i 0.3355 + 0.2957i 0.2425 0 0 0.9701 0.8944 0.8944 0.0000 注:p的列向量为特征向量 d =

-0.4995 + 1.3223i 0 0 0 -0.4995 - 1.3223i 0 0 0 2.0000 a^6

11.9680 13.0080 -4.9910 0 64.0000 0 19.9640 -4.9910 -3.0100

数学实验实验报告

4