已知a2?a?5?0,求3a2?7a?2a2?3a?2的值.
22.按要求画图,并回答问题:
如图,在同一平面内有三点A、B、C. (1)画直线AC和射线CB;
(2)过点A作射线CB的垂线AD,垂足为D;
BCA????(3)通过画图和测量,点B到直线AC的距离大约是cm(精确到0.1cm).
23.列方程解应用题:
为了推动门头沟“生态涵养区”建设,实验中学和远大中学的同学积极参加绿化校园的劳动.下图是两位同学关于此次劳动的一段对话:
两校共绿化了41平方米的土地!远大中学绿化面积比实验中学绿化面积的2倍少13平方米!
根据这段对话,求这两所中学分别绿化了多少平方米的土地?
24.潭柘寺公园是门头沟区著名的旅游景点,它
以古迹众多、风景优美享誉世界,在民间素 有“先有潭柘寺,后有北京城”的民谚.
该公园门票的价格为55元/次,如果购 买会员年卡,可享受如下优惠:
会员年卡类型 银卡 金卡 办卡费(元) 400 1450 每次门票收费(元) 35 0 (1)如果购买会员金卡,一年内入园10次,那么共消费元; (2)一年内入园次数为多少时,购买会员银卡比较省钱?为什么?
四、解答题(本题共12分,每小题6分)
25.如图,?AOB?120?,点C为∠AOB内部一点,OD平分∠BOC,OE平分∠AOD.
(1)如果?AOC?30?,依题意补全图形;
(2)在(1)的条件下,写出求∠EOC度数的思路(不必写出完整的推理过程); ..(3)如果?AOC??(0°<α<120°),直接用含α的代数式表示∠EOC的度数. ..
BOA
BOA
备用图
26.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算.
定义:如果ab?N(a>0,a≠1,N>0),那么b叫做以a为底N的对数,
记作logaN?b.
例如:因为53?125,所以log5125?3;因为112?121,所以log11121?2. 根据“对数”运算的定义,回答下列问题: (1)填空:log66?,log381?. (2)如果log2?m?2??3,求m的值.
(3) 对于“对数”运算,小明同学认为有“logaMN?logaM?logaN(a>0,a≠1,
M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.