2012----2013学年度九年级元月调研测试数学模拟试卷
1.二次根式
有意义时,x的取值范围是( )
A、x≥ B、x≤﹣ C、x≥﹣ D、x≤
2.下列各式正确的是( )
A.2?3 =5 B.(?4)2 =-4
2322C.35-5 =3 D.2? =2
23
3.下列图形中.既是轴对称图形又是中心对称图形的是( ) 4.下列事件中是不确定事件的为( )
A.367人中至少有2人的生日相同
B.今年国庆节这一天,我市的最高气温是28°C C.掷6枚相同的硬币,3枚正面向上4枚正面向下 D.掷两枚普通的骰子,掷得的点数之和不是奇数就是偶数
5.已知方程x2-5x+2=0的两个解分别为x1,x2,则x1+x2 -x1x2的值为( ) A.-7 B.-3 C.7 D.3
6.甲盒子中有编号为1、2、3的3个白色乒乓球,乙盒子中有编号为4、5、6的3个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为( ). A.
49 B.
59 C.
23 D.
79
7.如图,AB是⊙O的直径,C、D是半圆的三等分点,则∠C+∠D+∠E的度数是( ) A.90° B.120° C.105° D.150° 8.如图,⊙o1、⊙o2相内切于点A,其半径分别是8和4,将⊙o2沿直线
AEo1o2平移至两圆相外切时,则点o2移动的长
OB度是( )
A.4或8 B.8 C.4或16 D.8 或16
CD
9.观察下列各式:
(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72… 请你根据观察得到的规律判断下列各式正确的是( ) A.1005+1006+1007+…+3016=2011 C.1006+1007+1008+…+3016=2011
22
B.1005+1006+1007+…+3017=2011 D.1007+1008+1009+…+3017=2011
2
2
10.武汉某区旅游产业发展良好,2008年为640万元,2010年为1000万元,2011年增长率与2008至2010年年平均增长率相同,则2011年旅游收入为( ) A.1200万元 B.1250万元 C.1500万元 D.1000万元 11.对于一元二次方程ax2+bx+c=0 (a≠0),下列说法: ①若
ac+
bc =-1,则方程ax2+bx+c=0一定有一根是x=1;
②若c=a3,b=2a2,则方程ax2+bx+c=0有两个相等的实数根; ③若a<0,b<0,c>0,则方程cx+bx+a=0必有实数根; ④若b=a+2c,则它一定有两个不相等的实数根. 其中正确的结论是( )
A.①②③④ B.①②④ C.①③ D.②④ 12.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO
交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF; ②S四边形ABCD=
12DCEOFA22
AD·BC;③PB=PF;④AD为过
O、C、B三点的圆的切线.其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题(4小题,每小题3分,共12分)
PB?13.点(-4, 3)关于原点对称的点的坐标是____. 212?327=____. ???3??2??= 3??14.如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的⊙M与x轴相切.若点A的坐标为(0,8),则圆心M的坐标为______
图1 图2
15.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为______cm
16.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子21
的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白
5 4 色棋子______
三、解答题(9小题,共72分) 17.解方程:x-x-4=0. 18.计算:3
2x8 -2x2x+54x50E C19.如图,等腰三角形ABC内接于⊙O,BC=AC, 过点C作DE∥AB,求证:DE为⊙O的切线
20.如图,把?ABC置于平面直角坐标系中将△ABC 以O为旋转中心逆时针分别旋转90°,180°,270°, 请画出旋转后的图形.并分别写出点A对应点的坐标
21、学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.
(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?
(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元.当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?
22.如图,AD为△ABC外接圆⊙O的直径,过B,C两点作BC的垂线交直线AD分别于点E和点F 1)求证:AE=DF
2)若BE=2CF=6,AD=7,求EF的长
23.某商场为刺激消费,举行“赤橙黄绿青蓝紫抽奖”活动。将购物超过一定金额的消费水平分为甲、乙两种,甲种消费水平的顾客有机会在“赤橙黄绿”四张卡片是随机抽出一张,并领取相应的奖品;乙种消费水平的顾客有机会在“青蓝紫”三张卡片中随机抽取一张,并领取相应的奖品。各卡片对应的奖品如下表所示。
BDFADOBABCEAOC
消费水平 卡片 奖品 赤 电磁炉 甲种消费 橙 电脑包 黄 手机 绿 羊毛衫 青 炒锅 乙种消费 蓝 紫 鼠标 SIM手机卡 (1)小明计划分两次购物,可以获得甲种消费水平的两次抽奖机会。请用树型图或列表法表示小明两次抽奖所得卡片的所有结果
(2)小明计划分两次购物,可以获得甲乙两种消费水平抽奖机会各一次。求小明刚好同时抽到电脑包和鼠标的概率。
(3)小明计划分两次购物,可以获得甲乙两种消费水平抽奖机会各一次。求小明刚好同时抽到的两种奖能配套使用的概率。
(4)小明在商场购物两次,可以获得两次抽奖机会。直接写出小明刚好同时抽到电脑包和鼠标的概率。
24.如图,已知正方形ABCD和正方形BEFG,点F在边BC上,点M为AF的中点,连EM,1)在图中画出△BEF关于直线BE成轴对称的三角形,并证明CF=2ME
2)将图1中的正方形BEFG绕点B逆时针旋转至图2位置,其它条件不变,问CF=2ME吗?请证明
DDDCCCFMEABGFBEGFBESGMAMA3)如图3,过B作BS⊥ME于S,
若ES=1,BS=2,CF=5,则四边形CBEF的面积为_____(直接写出结果)
25.如图,点O1是x轴负半轴上一点,⊙O1分别交x轴于A,B,交y轴于C,D两点, B(2,0),C(0,4)(1)求⊙O1的坐标。2)E为⊙O1上一点,且弧ED=弧BD,连ED,BD, BE,过B作BM⊥ED于M,求BM的值
3)直线PC切⊙O1于C点,交x轴正半轴于P点,过A作AG⊥PC于G,连结OG,BC,当⊙O1的大小发生改变时,点C在Y轴正半轴移动时 求证:BC∥OG