∴d+2=1, ∴d=﹣1, ∴D(0,﹣1) ②△BCD∽△ABC, ∴∴∴d=6, ∴D(0,6);
,
,
(3)如图, ∵CE∥轴, ∴令y=﹣2, ∴﹣2=﹣2+3﹣2, ∴=0(舍)或=3, ∴E(3,﹣2),
∵B(2,0),C(0,﹣2),
∴直线BC的解析式为y=﹣2,设H(m,﹣m2+3m﹣2),F(m,m﹣2), ∵点F是线段BC上的点,
∴0<m<2,HF=﹣m2+3m﹣2﹣(m﹣2)=﹣m2+2m,
∴S△CHF+S△EHF=HF×3=(﹣m2+2m)=﹣(m2﹣2m+1)+=﹣(m﹣1)2+ ∴m=1时,△CHF与△HFE的面积之和最大,最大面积为,此时,H(1,0).