--
又引起新的碰撞游离,形成新的电子崩且汇合到最初电子崩中构成流注通道,而一旦形成流注,放电就可自己维持。因此汤生放电理论与流注放电理论最根本的区别在于放电达到自持阶段过程的解释不同,或自持放电的条件不同。
汤生放电理论适合于解释低气压、短间隙均匀电场中的气体放电过程和现象,而流注理论适合于大气压下,非短间隙均匀电场中的气体放电过程和现象。
1—4 极不均匀电场中的气体放电过程有两个不同于均匀电场、稍不均匀电场中气体放电的特性:
1.持续的电晕放电 电晕放电是在不均匀电场中,电场强度大的区域中发生的局部区域的放电,此时整个气体间隙仍未击穿,但在局部区域中气体已击穿。在稍不均匀电场中,电晕放电起始电压很接近(略低于)间隙的击穿电压,也观察不到明显的电晕放电现象。而在极不均匀电场中则可观察到明显的点晕放电现象,且点晕放电起始电压要低于(或大大低于——取决于电场均匀程度)间隙的击穿电压。
2.长间隙气体放电过程中的先导放电 当气体距离较长(>1m)时,流注通道是通过具有热游离本质的先导放电不断向前方(另一电极)推进的。由于间隙距离较长,当流注通道发展到一定距离,由于前方电场强度不够强(由于电场不均匀)流注要停顿。此时通过先导放电而将流注通道前方电场加强,从而促使流注通
---
--
道进一步向前发展。就这样,不断停顿的流注通道通过先导放电而不断推进,从而最终导致整个间隙击穿。
3.不对称极不均匀电场中的极性效应 不对称极不均匀电场气体间隙(典型电极为棒—板间隙)的电晕起始电压及间隙击穿电压随电极正负极性的不同而不同。正棒—负板气体间隙击穿电压要低于相同间隙距离负棒—正板气体间隙距离负棒—正板气体间隙的击穿电压,而电晕起始电压则相反。解释这种结点的要点是间隙中正空间电荷产生的电场对原电场的增强或消弱。判断间隙击穿电压高低看放电发展前方的电场是加强还是消弱,而判断电晕起始电压高低则看出现电晕放电电极附近的电场是增强还是消弱。出现正空间电荷的原因是由于气体游离产生的正负带电粒子定向运动速度差异很大,带负电的自由电子很快向正极性电极移动,而正空间电荷(正离子)由于移动缓慢,此时几乎仍停留在原地从而形成正空间电荷。对于正棒—负板气体间隙,正空间电荷的电场加强了放电发展前方的电场,有利于流注向前方发展,有利于放电发展。但此空间电荷的电场对于棒电极附近的电场是起消弱的作用,从而抑制了电晕放电。对于负棒—正板气体间隙,情况则相反。这就导致上面所述击穿电压和电晕起始电压的不同。
1—5 电晕放电与气体间隙的击穿都是自持放电,区别仅在于放电是在局部区域还是在整个区域。若出现电晕放电,将带来许
---
--
多危害。首先是电晕放电将引起功率损耗好能量损耗,因电晕放电时的光声热化学等效应都要消耗能量。其次,电晕放电还将造成对周围无线电通讯和电气测量的干扰,因用示波器观察,电晕电流为一个个断续的高频脉冲。另外,电晕放电时所产生的一些气体具有氧化和腐蚀的作用。而在某些环境要求比较高的场合,电晕放电时所发出的噪音有可能超过环保标准。为此,高压和超高压电气设备和输电线路应采取措施力求避免或限制电晕放电的产生。反过来,在某些场合下,电晕放电则被利用,如利用冲击电晕放电对波过程的影响作用可达到降低侵入变电站的雷电波波头陡度和幅值。电晕放电也被工业上某些方面所利用而达到某种用途。
1—6 气体间隙的击穿电压Uf是气体压力P和间隙距离S乘积的函数,这一规律称为巴申电律。这种函数关系常用曲线表示,气体总类不同,电极材料不同,这种函数关系的曲线也不同。巴申定律是由实验而不是通过解析的方法得到的气体放电规律。巴申定律的曲线是表示均匀电场气体间隙击穿电压与PS乘积之间的关系,它不适用于不均匀电场。此外,巴申定律是在气体温度不变的情况下得出的。对于气温并非恒定的情况应为Uf=F(δd),δ为气体的相对密度。
1—7 在持续电压(直流、工频交流)作用下,气体间隙在某一确定的电压下发生击穿。而在雷电冲击电压作用下,气体间隙
---
--
的击穿就没有这种某一个确定的击穿电压,间隙的击穿不仅与电压值有关,还与击穿过程的时间(放电时间)有关。这就是说,气体间隙的冲击击穿特性要用两个参数(击穿电压值和放电时间)来表征,而气体间隙在持续电压作用下击穿特性只要用击穿电压值一个参数来表征。用来表示气体间隙的冲击特性的是伏秒特性。冲击电压作用下气体间隙在电压达到U0(持续电压下间隙的击穿电压)值时,气体间隙并不能立即击穿而要经过一定的时间后才击穿,这段时间称为放电时延。放电时延包括两部分时延: 1.统计时延 从电压达U0值起至出现第一个有效电子为止的这段时间。统计时延的分散性较大。
2.放电形成时延 从出现第一个有效电子至间隙击穿位置的这段时延。
1—8 同一波形、不同幅值的冲击电压作用下,气体间隙(或固体绝缘)上出现的电压最大值和放电时间(或击穿时间)的关系,称为气体间隙(或固体绝缘)的伏秒特性。伏秒特性常用曲线(由实验得到)来表示,所以也称伏秒特性曲线,它就表征了气体间隙(或固体绝缘)在冲击电压下的击穿特性。在过电压保护中,如何能保证被保护电气设备得到可靠的保护(或限制作用至电气设备绝缘上的过电压数值),就要保证被保护电气设备绝缘的伏秒特性与保护装置(如避雷器)的伏秒特性之间配合正确。
---